
Biocompounds
www.bic.reapress.com

Biocompd. Vol. 2, No. 1 (2025) 17-41.

Paper Type: Original Article

HyperFunction and SuperHyperFunction in Chemistry

Abstract

Hyperstructures and their hierarchical extensions, the Superhyperstructures, furnish a flexible framework
for modelling multilayered phenomena across a wide range of disciplines. Viewed through the lens of
functions, these ideas manifest as HyperFunctions and SuperHyperFunctions, whose values belong to
iterated powersets rather than to ordinary codomains. Although the structural and computational aspects
of hyperstructures have been explored well beyond mathematics—including notable work in chemistry—the
corresponding functional counterparts remain largely unexamined in that context. To address this gap,
the present paper introduces several precise definitions of HyperFunctions and SuperHyperFunctions
tailored to chemical systems and investigates their fundamental properties. These set-valued constructs
capture nested reactivity patterns and multi-step pathways, thereby opening new avenues for describing
complex chemical processes.

Keywords: Hyperfunction, Superhyperfunction, Hyperstructure, Superhyperstructure, Partition func-
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1| Introduction
This section fixes notation and recalls the basic notions used throughout the paper. Unless explicitly stated
otherwise, all sets considered here are finite.
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1.1| Hyperfunctions and n-Superhyperfunctions
Hyperstructures[1, 2, 3, 4] and their iterated, hierarchical counterparts, n-superhyperstructures[5, 6], serve as
general formalisms for modeling multilayered phenomena across diverse domains. Representative instances include
the SuperHyperGraph[7, 8, 9, 10] and the SuperHyperAlgebra[11, 12, 13, 14], each realizing a superhyperstructure
within a specific mathematical context. These frameworks have also been actively explored in chemistry and
chemical-reaction theory, where their ability to encode nested interactions is particularly advantageous[4, 15, 16,
17, 18, 19]. At the level of functions, the notions of hyperfunction and n-superhyperfunction generalize classical
single-valued maps to set-valued and, respectively, iterated set-valued outputs[20, 21]. These ideas have seen
active development in recent years across multiple disciplines[22, 23, 24]. For convenience, the key definitions
and statements required in this work are collected below.

Definition 1.1 (Universe). Let U be a nonempty finite set, called the universe (or base set). All subsequent
constructions—powersets, hyperstructures, and their iterates—are built on U .

Definition 1.2 (Power set[25]). The power set of U is
P(U) = { A | A ⊆ U }.

Definition 1.3 (Iterated powerset [26, 27, 28, 29]). For each integer n ≥ 1, the n-fold iterated powerset of U is
defined recursively by

P1(U) = P(U), P n+1(U) = P
(
P n(U)

)
.

If one wishes to exclude the empty set at every stage, replace P with

P∗(X) = P(X) \ {∅}.

Remark 1.4. The iterated powerset construction organizes information in layers: elements of P(U) are subsets
of a universe U (single-layer groupings); elements of P 2(U) = P(P(U)) are families of subsets (collections of
groupings); elements of P 3(U) are families of families (portfolios of alternative collections), and so on. In many
practical settings, U is finite and one often uses the nonempty variant P∗(X) = P(X) \ {∅} at each level to
exclude degenerate choices.

Example 1.5 (Trip planning: days, itineraries, and options). Let the universe of activities be

Uact = {Sensoji (Se), teamLab (Te), Tsukiji (Ts), Onsen (On)}.

Single-day plans are subsets of activities, e.g.

D1 = {Se, Ts}, D2 = {Te, On} ∈ P(Uact).

A two-day itinerary is a set of day plans, e.g.

IA = {D1, D2} ∈ P 2(Uact).

Suppose we also consider an alternative itinerary

IB =
{

{Se, Te}, {Ts, On}
}

∈ P 2(Uact).

A traveler’s shortlist of choices is then a set of itineraries

O = {IA, IB} ∈ P 3(Uact).
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If empty days are disallowed, replace P by P∗ at the appropriate level.

Example 1.6 (Role-based access control: privileges, roles, and policies). Let the universe of privileges be

Upriv = {read (r), write (w), deploy (d), audit (a)}.

A role is a subset of privileges (an element of P(Upriv)):

Rdev = {r, w}, Rops = {r, d}, Raudit = {r, a}.

A department policy bundles roles (an element of P 2(Upriv)):

BEng = {Rdev, Rops}, BRisk = {Raudit}.

Corporate policy options across regions form a family of such bundles

C = {BEng, BRisk} ∈ P 3(Upriv).

If a role must never be empty, use P∗ in place of P at the role level.

Example 1.7 (Manufacturing: parts, modules, and product lines). Let the universe of parts be

Uparts = {frame (Fr), battery (Ba), screen (Sc), SoC (So), camera (Ca)}.

A module/BOM slice is a subset of parts (element of P(Uparts)):

Mcore = {So}, Mdisplay = {Sc}, Mpower = {Ba}, Mshell = {Fr}, Mcam = {Ca}.

A product variant groups modules (element of P 2(Uparts)):

Vbasic = {Mcore, Mdisplay, Mpower, Mshell}, Vpro = {Mcore, Mdisplay, Mpower, Mshell, Mcam}.

A product line portfolio is a set of variants

L = {Vbasic, Vpro} ∈ P 3(Uparts).

Requiring each module to be nonempty corresponds to using P∗ at the module level.

Example 1.8 (Academic planning: courses, term schedules, and degree plans). Let the universe of courses be

Ucrs = {Algebra (Alg), Analysis (Ana), CS (CS), Physics (Phy), Ethics (Eth)}.

A one-term schedule is a subset of courses:

SSpring = {Alg, Ana, CS} ∈ P(Ucrs), SFall = {Phy, Eth} ∈ P(Ucrs).

A degree plan is a set of term schedules:

DMath = {SSpring, SFall} ∈ P 2(Ucrs).

A catalog of admissible degree plans is then
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A = {DMath, DCS} ∈ P 3(Ucrs).

Excluding empty terms or empty degree plans is modeled by replacing P with P∗ at the corresponding levels.

Definition 1.9 (Hyperoperation). (cf.[5]) A hyperoperation generalizes an ordinary binary operation by allowing
the output to be a set of results rather than a single element. Precisely, for a set S, a map

◦ : S × S −→ P(S)

is a hyperoperation, where P(S) denotes the power set of S.

Definition 1.10 (Hyperfunction). [21, 20] A hyperfunction is a map whose domain is a classical set and whose
codomain is its power set. Formally, for a set S,

f : S −→ P(S).

For each x ∈ S, the value f(x) ⊆ S is a subset of S. Thus a single input may be associated with multiple
outputs, in contrast to the single-valued case.

Example 1.11 (Ingredient pairing as a hyperfunction). Let the universe of ingredients be

S = {beef (B), tomato (T), basil (Ba), parmesan (P)}.

A pairing suggestion system assigns to each ingredient a set of compatible ingredients. Define a hyperfunction
f : S → P(S) by

f(B) = {T, Ba},

f(T) = {Ba, P},

f(Ba) = {T, P},

f(P) = {B, T}.

Verification: since |S| = 4, |P(S)| = 24 = 16. For each x ∈ S we have f(x) ⊆ S, hence f(x) ∈ P(S) and f
is a valid hyperfunction. This captures the real-world fact that a single ingredient can have multiple suitable
partners.

Example 1.12 (Airport one-hop connectivity as a hyperfunction). Let S be a finite set of airports, e.g.

S = {HND, KIX, CTS, FUK}.

Define f : S → P(S) where f(a) is the set of airports reachable from a by a direct flight (within the current
timetable):

f(HND) = {KIX, CTS}, f(KIX) = {HND, FUK}, f(CTS) = {HND}, f(FUK) = {KIX}.

Each f(a) ⊆ S, so f is a hyperfunction. Practically, this aggregates multiple feasible next stops for a given
origin.
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Example 1.13 (Email triage labels as a hyperfunction). Let S be a set of labels used by a mail client:

S = {Work, Finance, Travel, Family}.

A rule engine maps a received message’s primary label to a set of additional labels:

f(Work) = {Finance}, f(Finance) = {Work, Travel}, f(Travel) = {Finance, Family}, f(Family) = ∅.

Again f : S → P(S). The multi-valued output reflects that a single message may belong to several folders
simultaneously.

Definition 1.14 (SuperHyperOperations). [26] Let H be a nonempty set, and write P(H) for its power set.
Define the iterated power sets recursively by

P0(H) = H, P k+1(H) = P
(
P k(H)

)
(k ≥ 0).

Write P n
∗ (H) for the subset of P n(H) consisting of all nonempty elements at the outermost level.

An (m, n)-SuperHyperOperation is an m-ary map

◦(m,n) : Hm −→ P n
∗ (H).

If the codomain excludes the empty set (i.e., P n
∗ (H)), we refer to the classical-type (m, n)-SuperHyperOperation;

if the codomain is P n(H) allowing the empty set, we obtain the neutrosophic-type variant. In both cases, these
maps extend hyperoperations to higher levels through iterated power-set targets.

Definition 1.15 (n-Superhyperfunction). [21, 24, 20] For an integer n ≥ 2 and 0 ≤ r ≤ n, an n-
superhyperfunction is a map

f : P r(S) −→ P n(S),

where P k(S) denotes the k-fold iterated power set of a set S. Thus f sends subsets drawn from level r to objects
at level n.

Definition 1.16 ((m, n)-Superhyperfunction). (cf.[30, 21]) Let S be a nonempty set and let m, n ≥ 1. An
(m, n)-superhyperfunction is a mapping

f : P m(S) −→ P n(S).

When m = r ≤ n, this recovers the customary notion of an n-superhyperfunction P r(S) → P n(S).

Example 1.17 ((m, n) = (1, 2) superhyperfunction for itinerary aggregation). Let the universe of activities be

S = {Sensoji (Se), teamLab (Te), Tsukiji (Ts), Onsen (On)}.

Elements of P(S) are day plans. Elements of P2(S) = P(P(S)) are itineraries (sets of day plans). Define
g : P1(S) → P2(S) by sending a chosen day plan to a family of two-day itineraries containing it. For

D1 = {Se, Ts} ∈ P(S), D2 = {Te, On} ∈ P(S), D3 = {Te} ∈ P(S),

set
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IA = {D1, D2} ∈ P2(S), IB = {D1, D3} ∈ P2(S),

and define

g(D1) = {IA, IB} ∈ P2(S).

Membership check (explicit):

Di ⊆ S ⇒ Di ∈ P(S); {D1, D2} ⊆ P(S) ⇒ IA ∈ P2(S);

similarly IB ∈ P2(S), hence {IA, IB} ⊆ P2(S) and g(D1) ∈ P2(S). Thus g : P1(S) → P2(S) is a valid
(1, 2)-superhyperfunction.

Example 1.18 ((m, n) = (1, 2) superhyperfunction for role → policy bundles). Let the privilege universe be

S = {read (r), write (w), deploy (d), audit (a)}.

A role is a subset of privileges: Rdev = {r, w}, Rops = {r, d}, Raudit = {r, a} in P(S). An access policy is a set
of roles, i.e. an element of P2(S):

BEng = {Rdev, Rops}, BRisk = {Raudit}.

Define h : P1(S) → P2(S) by

h(Rdev) = {BEng, BRisk}, h(Rops) = {BEng}.

Then h is a (1, 2)-superhyperfunction mapping a role (level 1) to a family of admissible policies (level 2).

Example 1.19 ((m, n) = (2, 3) superhyperfunction for regional policy portfolios). Continue with the previous S.
Elements of P2(S) are policies (sets of roles). Elements of P3(S) are policy portfolios (sets of policies). Consider
the input

X = {Rdev, Rops} ∈ P2(S).

Define two region-specific policies

BJP = {Rdev, Rops} ∈ P2(S), BUS = {Rdev, Rops, Raudit} ∈ P2(S),

and set the portfolio

Π = {BJP, BUS} ∈ P3(S).

Define H : P2(S) → P3(S) by H(X) = Π. Since Π ⊆ P2(S), indeed Π ∈ P3(S), so H is a valid (2, 3)-
superhyperfunction mapping a set of roles (level 2) to a portfolio of regional policies (level 3).

Remark 1.20 (Cardinalities). If |S| = s, then |P(S)| = 2s and, inductively, |P 2(S)| = 2 2s , |P 3(S)| = 2 2 2s

,
etc. The growth reflects the combinatorial explosion of feasible alternatives captured by superhyperfunctions.
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2| Result: Partition Function
Functions have been extensively developed in the field of Chemistry as well [31, 32, 33, 34, 35, 36]. In this paper,
we define the HyperFunction and SuperHyperFunction for several such functions. We begin with the Partition
Function.

2.1| Partition Function
A thermodynamic system is a well-defined collection of matter or radiation enclosed by boundaries, exchanging
heat and work with surroundings (cf.[37, 38, 39]). The partition function maps the inverse temperature to the
sum of Boltzmann factors across all microstates, revealing thermodynamic properties (cf.[40, 41, 42]).

Definition 2.1 (Microstate of a Thermodynamic System). (cf.[43, 44]) Let a thermodynamic system consist of
N classical particles confined to a region V ⊆ R3. Denote by

Γ = V × R3 × · · · × V × R3︸ ︷︷ ︸
N times

the 6N -dimensional phase space, whose coordinates are (q1, p1, . . . , qN , pN ), where qi ∈ V is the position and
pi ∈ R3 the momentum of the ith particle. A microstate of the system is any point

ω = (q1, p1, . . . , qN , pN ) ∈ Γ,

i.e. a complete specification of all particle positions and momenta.

Definition 2.2 (Partition function). (cf.[45, 46]) Let Ω be the finite set of microstates of a thermodynamic
system, and let

E : Ω −→ R
assign to each state s ∈ Ω its energy E(s). For inverse temperature β > 0, the partition function is the map

Z : R>0 −→ R>0, β 7−→ Z(β) =
∑
s∈Ω

e−β E(s).

2.2| Partition HyperFunction
A Partition HyperFunction maps each microstate of a thermodynamic system to a set containing its Boltzmann
factor, thereby extending the classical partition function into a hyperfunction framework.

Definition 2.3 (Partition HyperFunction). Let Ω be a finite set of microstates of a thermodynamic system,
and let

E : Ω −→ R
assign to each state s ∈ Ω its energy E(s). Fix an inverse temperature β > 0. The Partition HyperFunction at β
is the mapping

Zβ
H : Ω −→ P(R>0), s 7−→ { e−βE(s)}.

Here P(R>0) denotes the power set of the positive reals.

Example 2.4 (Two-level atom as a Partition HyperFunction). Let the microstate set be Ω = {g, e}
(ground/excited), with energies

E(g) = 0, E(e) = ∆ > 0.

Fix an inverse temperature β > 0. The Partition HyperFunction at β is

Zβ
H : Ω −→ P(R>0), s 7−→ {e−βE(s)}.

Concretely,
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Zβ
H(g) = {1}, Zβ

H(e) = {e−β∆}.

Verification (with numbers): if ∆ = 2 and β = 1, then

Z1
H(g) = {1}, Z1

H(e) = {e−2} ≈ {0.1353}.

Recovering the classical partition function:

Z(β) =
∑
s∈Ω

e−βE(s) =
∑
s∈Ω

(⋃
Zβ

H(s)
)

= 1 + e−β∆.

Thus Zβ
H encodes each Boltzmann factor as a singleton, whose union-and-sum yields the usual Z(β).

Example 2.5 (Three-conformer molecule as a Partition HyperFunction). Let Ω = {A1, A2, B} represent two
microstates of conformer A and one of conformer B, with

E(A1) = E(A2) = 0.5, E(B) = 1.2.

For β = 1,

Z1
H(A1) = {e−0.5} ≈ {0.6065}, Z1

H(A2) = {e−0.5} ≈ {0.6065}, Z1
H(B) = {e−1.2} ≈ {0.3010}.

Hence

Z(1) =
∑
s∈Ω

e−E(s) =
∑
s∈Ω

(⋃
Z1

H(s)
)

≈ 0.6065 + 0.6065 + 0.3010 = 1.5140.

Each image Z1
H(s) ⊂ R>0, so Z1

H : Ω → P(R>0) is a valid HyperFunction.

Theorem 2.6. The map Zβ
H is indeed a Hyperfunction, since its codomain is a powerset.

Proof : By construction, Zβ
H has domain Ω (a classical set) and codomain P(R>0), so it satisfies the definition of

a Hyperfunction. Moreover, for each s ∈ Ω, Zβ
H(s) is a (nonempty) subset of R>0, as required. □

Theorem 2.7. Let
Z : R>0 −→ R>0, β 7−→

∑
s∈Ω

e−βE(s)

be the classical partition function. Then Z can be recovered from the Partition HyperFunction by

Z(β) =
∑
s∈Ω

(⋃
Zβ

H(s)
)
,

i.e. by summing the singleton subsets produced by Zβ
H. Hence Zβ

H truly generalizes Z as a Hyperfunction.

Proof : For each s ∈ Ω, by definition ⋃
Zβ

H(s) =
{

e−βE(s)},

so ∑
s∈Ω

(⋃
Zβ

H(s)
)

=
∑
s∈Ω

e−βE(s) = Z(β).

This shows that the classical partition function Z arises from the Hyperfunction Zβ
H by summation over its

image-sets. □
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2.3| Partition SuperHyperFunction
Partition SuperHyperFunction further generalizes this idea by mapping aggregated collections of microstates
to nested powersets of Boltzmann factors, enabling multi-level representation and analysis of thermodynamic
properties.

Definition 2.8 (Partition (m, n)-SuperHyperFunction). Let Ω be a finite set of microstates, and let
E : Ω −→ R

assign to each s ∈ Ω its energy E(s). Fix β > 0. For any integers m, n ≥ 0, define the map

Z
(m,n),β
SH : Pm(Ω) −→ Pn

(
R>0

)
recursively as follows:

(i) If m = 0, then P0(Ω) = Ω, and for each s ∈ Ω,

Z
(0,n),β
SH (s) = {{· · · { e−βE(s)} · · · }}︸ ︷︷ ︸

n nested braces

∈ Pn

(
R>0

)
.

(ii) If m > 0, then Pm(Ω) = P
(
Pm−1(Ω)

)
, and for each X ⊆ Pm−1(Ω),

Z
(m,n),β
SH (X) =

{
Z

(m−1,n),β
SH (Y ) | Y ∈ X

}
⊆ Pn

(
R>0

)
.

Example 2.9 ((m, n) = (1, 2) Partition SuperHyperFunction: coarse-grained ensembles). Let Ω = {s1, s2, s3}
be microstates with energies

E(s1) = 0, E(s2) = 1, E(s3) = 2.

Fix β = 1. By the recursive definition, for any X ∈ P1(Ω) = P(Ω),

Z
(1,2),1
SH (X) =

{
Z

(0,2),1
SH (s)

∣∣ s ∈ X
}

∈ P2(R>0),

where Z
(0,2),1
SH (s) =

{
{e−E(s)}

}
∈ P2(R>0) is a doubly nested singleton.

Take X = {s2, s3}. Then

Z
(0,2),1
SH (s2) =

{
{e−1}

}
≈

{
{0.3679}

}
,

Z
(0,2),1
SH (s3) =

{
{e−2}

}
≈

{
{0.1353}

}
,

and hence

Z
(1,2),1
SH ({s2, s3}) =

{ {
{e−1}

}
,

{
{e−2}

} }
∈ P2(R>0).

Membership check: each inner {e−E(s)} ⊂ R>0, so
{

{e−E(s)}
}

∈ P2(R>0); collecting these for s ∈ X yields an
element of P

(
P2(R>0)

)
= P3(R>0) if one more outer aggregation is applied. Here, by definition, we aggregate

exactly once over s ∈ X, giving an object in P2(R>0), as required.

Example 2.10 ((m, n) = (2, 3) Partition SuperHyperFunction: portfolios of ensembles). Continue with the
same Ω and β = 1. Let

Y1 = {s1, s2}, Y2 = {s2, s3}, X = {Y1, Y2} ∈ P2(Ω).

By recursion,
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Z
(2,3),1
SH (X) =

{
Z

(1,3),1
SH (Y )

∣∣ Y ∈ X
}

∈ P3(R>0),

with

Z
(1,3),1
SH (Y ) =

{
Z

(0,3),1
SH (s)

∣∣ s ∈ Y
}

, Z
(0,3),1
SH (s) =

{
{{e−E(s)}}

}
.

Therefore,

Z
(1,3),1
SH (Y1) =

{ {
{ e0 }

}
,

{
{ e−1 }

} }
=

{ {
{1}

}
,

{
{e−1}

} }
,

Z
(1,3),1
SH (Y2) =

{ {
{ e−1 }

}
,

{
{ e−2 }

} }
.

Finally,

Z
(2,3),1
SH (X) =

{
Z

(1,3),1
SH (Y1), Z

(1,3),1
SH (Y2)

}
∈ P3(R>0),

which is a set of (sets of) nested singletons of Boltzmann factors, i.e. a portfolio of ensemble-level contributions
consistent with the (2, 3) codomain.

Theorem 2.11. When (m, n) = (0, 0), the map

Z
(0,0),β
SH : Ω → R>0, s 7→ e−βE(s)

is exactly the classical Boltzmann-factor function. Moreover,

Z(β) =
∑
s∈Ω

Z
(0,0),β
SH (s) =

∑
s∈Ω

e−βE(s),

so the usual partition function arises by summation over this (0, 0)-superhyperfunction.

Proof : Since P0(Ω) = Ω and P0(R>0) = R>0, by definition Z
(0,0),β
SH (s) = e−βE(s). Summing these values over

all s ∈ Ω reproduces Z(β) =
∑

s

e−βE(s), the classical partition function. □

Theorem 2.12. When (m, n) = (0, 1), the map

Z
(0,1),β
SH : Ω → P(R>0), s 7→ {e−βE(s)}

coincides with the Partition HyperFunction Zβ
H.

Proof : Here P0(Ω) = Ω and P1(R>0) = P(R>0). By the m = 0 rule,

Z
(0,1),β
SH (s) = { e−βE(s)},

which is exactly the definition of the Partition HyperFunction Zβ
H : Ω → P(R>0), s 7→ {e−βE(s)}. □
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3| Result: Reaction rate Function
3.1| Reaction rate Function
Chemical reactions are processes where substances, through making and breaking chemical bonds, transform into
different substances, accompanied by energy changes (cf.[47, 16, 18, 48, 49]). The reaction rate function gives
reaction velocity as rate constant multiplied by reactant concentrations raised to their stoichiometric powers
(cf.[50, 51, 52, 53]).

Definition 3.1 (Reaction rate function). (cf.[54, 55, 56, 57]) Consider the elementary chemical reaction
a A + b B −→ products,

where a, b ∈ N and the concentrations [A], [B] lie in R≥0. The reaction rate function is

v : R≥0 × R≥0 −→ R≥0,
(
[A], [B]

)
7−→ v

(
[A], [B]

)
= k [A] a [B] b,

where k > 0 is the rate constant.

Example 3.2 (Bimolecular reaction, first order in each reactant). Consider A + B → products with a = b = 1,
k = 0.50 M−1 s−1, [A] = 0.10 M, [B] = 0.25 M. Then

v = k[A][B] = 0.50 × 0.10 × 0.25 = 0.0125 M s−1.

Calculation detail: 0.10 × 0.25 = 0.025, and 0.50 × 0.025 = 0.0125.

Example 3.3 (Termolecular rate law: 2NO + O2 → 2NO2). A common kinetic model uses v = k[NO]2[O2].
Take k = 4.0 M−2 s−1, [NO] = 0.020 M, [O2] = 0.010 M. Then

v = 4.0 × (0.020)2 × 0.010 = 4.0 × 0.0004 × 0.010 = 4.0 × 0.000004 = 1.6 × 10−5 M s−1.

3.2| Reaction rate HyperFunction
A Reaction rate HyperFunction maps each pair of reactant concentrations to a set containing its calculated
reaction rate value.

Definition 3.4 (Reaction rate HyperFunction). Consider the elementary chemical reaction
a A + b B −→ products,

where a, b ∈ N and the concentrations [A], [B] lie in R≥0. Let k > 0 be the rate constant. The reaction rate
HyperFunction is the map

vH : R≥0 × R≥0 −→ P
(
R≥0

)
,

(
[A], [B]

)
7−→ { k [A] a [B] b}.

Example 3.5 (Catalyst on/off uncertainty produces a set of possible rates). Suppose A+B → P with a = b = 1.
If a catalyst valve might be off or on, the rate constant is

koff = 0.10 M−1 s−1, kon = 0.60 M−1 s−1.

For [A] = 0.20 M, [B] = 0.30 M,

voff = koff [A][B] = 0.10 × 0.20 × 0.30 = 0.006 M s−1,

von = kon[A][B] = 0.60 × 0.20 × 0.30 = 0.036 M s−1.

Thus
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vH([A], [B]) = { voff , von} = { 0.006, 0.036 } ⊂ R≥0,

which is a valid HyperFunction output (a subset of R≥0).

Theorem 3.6. The map vH is a Hyperfunction.

Proof : By definition a Hyperfunction is any map whose domain is a classical set and whose codomain is a
powerset. Here the domain is R≥0 × R≥0 and the codomain is P(R≥0). Since for each ([A], [B]), vH([A], [B]) is
a (singleton) subset of R≥0, vH satisfies the definition of a Hyperfunction. □

Theorem 3.7. Let
v : R≥0 × R≥0 −→ R≥0,

(
[A], [B]

)
7→ k [A] a [B] b

be the classical reaction rate function. Then for all [A], [B],

v([A], [B]) =
⋃

vH([A], [B]),

so v is recovered by taking the union over the image-sets of the Hyperfunction vH.

Proof : By definition of vH,
vH([A], [B]) = { k [A] a [B] b},

hence ⋃
vH([A], [B]) = k [A] a [B] b = v([A], [B]).

This shows that the classical reaction rate function v is obtained from vH by union, demonstrating that vH
indeed generalizes v as a Hyperfunction. □

3.3| Reaction rate SuperHyperFunction
A Reaction rate SuperHyperFunction generalizes this by mapping aggregated concentration sets to nested
powersets of possible reaction rate values.

Definition 3.8 (Reaction rate (m, n)-SuperHyperFunction). Let

D = R≥0 × R≥0, v([A], [B]) = k [A] a [B] b,

with a, b ∈ N and k > 0. For integers m, n ≥ 0, define

v
(m,n)
SH : Pm(D) −→ Pn(R≥0)

recursively by:

(i) If m = 0, then P0(D) = D. For x = ([A], [B]) ∈ D,

v
(0,n)
SH (x) = {{· · · { k [A] a [B] b} · · · }}︸ ︷︷ ︸

n nested braces

∈ Pn(R≥0).

(ii) If m > 0, then Pm(D) = P
(
Pm−1(D)

)
. For any X ⊆ Pm−1(D),

v
(m,n)
SH (X) =

{
v

(m−1,n)
SH (Y ) | Y ∈ X

}
⊆ Pn(R≥0).

Example 3.9 ((m, n) = (1, 2): a set of operating points → a set of nested singletons). Let a = b = 1 and
k = 0.50 M−1 s−1. Consider two operating points

x1 = (0.10, 0.20), x2 = (0.30, 0.10) ∈ D,

representing ([A], [B]) in M. Compute

Hyperfunction and superhyperfunction in chemistry                                               28



v(x1) = 0.50 × 0.10 × 0.20 = 0.010,

v(x2) = 0.50 × 0.30 × 0.10 = 0.015.

By the (m, n) = (1, 2) rule,

v
(1,2)
SH

(
{x1, x2}

)
=

{
{ 0.010 }︸ ︷︷ ︸
∈P(R≥0)

, { 0.015 }︸ ︷︷ ︸
∈P(R≥0)

}
∈ P2(R≥0).

Membership check: each {v(xi)} ⊂ R≥0 lies in P(R≥0); collecting them yields an element of P
(
P(R≥0)

)
=

P2(R≥0).

Example 3.10 ((m, n) = (2, 3): batches of operating sets → portfolios of nested outputs). Let a = 2, b = 1,
k = 4.0 M−2 s−1. Define three points

x1 = (0.020, 0.010), x2 = (0.015, 0.020), x3 = (0.025, 0.008).

Compute the scalar rates

v(x1) = 4.0 × (0.020)2 × 0.010 = 4.0 × 0.0004 × 0.010 = 1.6 × 10−5,

v(x2) = 4.0 × (0.015)2 × 0.020 = 4.0 × 0.000225 × 0.020 = 1.8 × 10−5,

v(x3) = 4.0 × (0.025)2 × 0.008 = 4.0 × 0.000625 × 0.008 = 2.0 × 10−5.

Form two batches (level m = 2 inputs)

Y1 = {x1, x2}, Y2 = {x3}, X = {Y1, Y2} ∈ P2(D).

By recursion,

v
(0,3)
SH (xi) =

{
{{ v(xi) }}

}
∈ P3(R≥0),

v
(1,3)
SH (Yj) =

{
v

(0,3)
SH (x)

∣∣ x ∈ Yj

}
∈ P3(R≥0),

v
(2,3)
SH (X) =

{
v

(1,3)
SH (Y )

∣∣ Y ∈ X
}

∈ P3(R≥0).

Hence explicitly,

v
(1,3)
SH (Y1) =

{
{{{1.6 × 10−5}}}, {{{1.8 × 10−5}}}

}
,

v
(1,3)
SH (Y2) =

{
{{{2.0 × 10−5}}}

}
,

and

v
(2,3)
SH (X) =

{
v

(1,3)
SH (Y1), v

(1,3)
SH (Y2)

}
∈ P3(R≥0),

which is a portfolio (set) of batch-level nested outputs, consistent with the (2, 3) codomain.

Theorem 3.11. When (m, n) = (0, 0), the map

v
(0,0)
SH : D → R≥0, ([A], [B]) 7→ k [A] a [B] b

coincides with the classical reaction rate function v.

29  Fujita et al. | Biocompd. 2(1) (2025) 17-41



Proof : Since P0(D) = D and P0(R≥0) = R≥0, by definition

v
(0,0)
SH ([A], [B]) = k [A] a [B] b = v([A], [B]),

so v
(0,0)
SH ≡ v. □

Theorem 3.12. When (m, n) = (0, 1), the map

v
(0,1)
SH : D → P(R≥0), ([A], [B]) 7→ { k [A] a [B] b}

coincides with the Reaction rate HyperFunction vH : R≥0 × R≥0 → P(R≥0).

Proof : Here P1(R≥0) = P(R≥0). By the m = 0, n = 1 rule,

v
(0,1)
SH ([A], [B]) = { k [A] a [B] b} = vH([A], [B]),

so v
(0,1)
SH ≡ vH. □

4| Result: Dose–response Function
4.1| Dose–response Function
Drug dose is the specific quantity of medication administered at one time to achieve desired therapeutic effect
safely and effectively (cf.[58, 59]). The Hill dose–response function transforms drug dose into continuous biological
effect bounded between minimal and maximal response levels (cf.[60, 61, 62]).

Definition 4.1 (Dose–response function). (cf.[63, 64, 65]) Let D ∈ R≥0 denote the dose of a drug or toxin. Fix
parameters Emin, Emax ≥ 0, the Hill coefficient h > 0, and the half-maximal concentration EC50 > 0. The Hill
dose–response function is

f : R≥0 −→
[
Emin, Emax

]
, D 7−→ f(D) = Emin +

(
Emax − Emin

) D h

EC h
50 + D h

.

Example 4.2 (Analgesic dose–response (Hill model)). Fix parameters Emin = 0, Emax = 100 (percent effect),
Hill coefficient h = 2, and EC50 = 50 mg. The Hill function is

f(D) = 100 · D2

502 + D2 .

Explicit evaluations:

f(25) = 100 · 252

502 + 252 = 100 · 625
2500 + 625 = 100 · 625

3125 = 100 · 0.2 = 20,

f(50) = 100 · 502

502 + 502 = 100 · 2500
5000 = 50,

f(100) = 100 · 1002

502 + 1002 = 100 · 10000
2500 + 10000 = 100 · 10000

12500 = 100 · 0.8 = 80.

Interpretation: 25, 50, 100 mg yield approximately 20%, 50%, and 80% of maximal analgesic effect.
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4.2| Dose–response HyperFunction
Dose–response HyperFunction maps each drug dose to a set of possible effect values, capturing parameter
uncertainty, patient variability, and regimes.

Definition 4.3 (Dose–response HyperFunction). Let

f : R≥0 −→ [Emin, Emax], f(D) = Emin +
(
Emax − Emin

) Dh

EC h
50 + Dh

,

be the Hill dose–response function with parameters Emin, Emax ≥ 0, h > 0, and EC50 > 0. The Dose–response
HyperFunction is

fH : R≥0 −→ P
(
[Emin, Emax]

)
, D 7−→ { f(D)}.

Example 4.4 (Dose–response HyperFunction: interpatient variability (pharmacogenomics)). Keep Emin = 0,
Emax = 100, h = 2. Suppose population variability induces two plausible half-maximal doses EC50 ∈ {40, 70} mg
(e.g., ultrarapid vs. poor metabolizers). Define the HyperFunction

fH : R≥0 −→ P([0, 100]), D 7−→
{

f40(D), f70(D)
}

,

where fx(D) = 100 · D2

x2 + D2 . For a fixed prescription D = 50 mg,

f40(50) = 100 · 502

402 + 502 = 100 · 2500
1600 + 2500 = 100 · 2500

4100 ≈ 60.98,

f70(50) = 100 · 502

702 + 502 = 100 · 2500
4900 + 2500 = 100 · 2500

7400 ≈ 33.78.

Hence fH(50) = { 60.98, 33.78 } ⊂ [0, 100], capturing heterogeneous patient responses to the same dose.

Theorem 4.5. The map fH is a Hyperfunction.

Proof : By definition, a Hyperfunction is any map whose domain is an ordinary set and whose codomain is a
powerset. Here the domain is R≥0 and the codomain is P([Emin, Emax]). For each D ≥ 0, fH(D) = {f(D)} is a
singleton subset of [Emin, Emax]. Thus fH satisfies the requirements of a Hyperfunction. □

Theorem 4.6. The classical dose–response function f is recovered by union over the HyperFunction fH:

∀ D ≥ 0, f(D) =
⋃

fH(D).

Hence fH generalizes f .

Proof : By definition of fH,
fH(D) = { f(D)},

so ⋃
fH(D) = f(D).

Therefore the classical function f arises from the HyperFunction fH by taking the union of its image-sets. □
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4.3| Dose–response SuperHyperFunction
Dose–response SuperHyperFunction maps aggregated dose sets to nested powersets of effects, enabling multi-level
analysis across titration menus, clinics, and cohorts.

Definition 4.7 (Dose–response (m, n)-SuperHyperFunction). Let

D = R≥0, f(D) = Emin +
(
Emax − Emin

) D h

EC h
50 + D h

,

with parameters Emin, Emax ≥ 0, Hill coefficient h > 0, and half-maximal concentration EC50 > 0. For integers
m, n ≥ 0, define the (m, n)-SuperHyperFunction

f
(m,n)
SH : Pm(D) −→ Pn

(
[Emin, Emax]

)
recursively by:

(i) If m = 0, then P0(D) = D, and for each D ∈ R≥0,

f
(0,n)
SH (D) = {{· · · { f(D)} · · · }}︸ ︷︷ ︸

n nested braces

∈ Pn

(
[Emin, Emax]

)
.

(ii) If m > 0, then Pm(D) = P
(
Pm−1(D)

)
, and for any X ⊆ Pm−1(D),

f
(m,n)
SH (X) =

{
f

(m−1,n)
SH (x) | x ∈ X

}
⊆ Pn

(
[Emin, Emax]

)
.

Example 4.8 ((m, n) = (1, 2) Dose–response SuperHyperFunction: titration menus → nested response sets).
Let D = R≥0 (dose space) and retain the first example’s parameters Emin = 0, Emax = 100, h = 2, EC50 = 50 mg.
A clinic offers two titration options X = {25, 100} ⊂ D. Define

f
(1,2)
SH : P(D) −→ P2(

[0, 100]
)
, f

(1,2)
SH (X) =

{
{f(25)}, {f(100)}

}
.

Using the calculated values f(25) = 20 and f(100) = 80,

f
(1,2)
SH ({25, 100}) =

{
{20}, {80}

}
∈ P2(

[0, 100]
)
.

This encodes, at nesting level n = 2, the menu of dose options and their respective effects.

Example 4.9 ((m, n) = (2, 3) Dose–response SuperHyperFunction: multi-center portfolios). Two hospitals use
different titration sets: X1 = {25, 50}, X2 = {50, 100} ⊂ D. Form the portfolio X = {X1, X2} ∈ P2(D). Define
recursively

f
(0,3)
SH (d) =

{
{{ f(d) }}

}
∈ P3(

[0, 100]
)
,

f
(1,3)
SH (Y ) =

{
f

(0,3)
SH (d)

∣∣ d ∈ Y
}

,

f
(2,3)
SH (X) =

{
f

(1,3)
SH (Y )

∣∣ Y ∈ X
}

.

Using f(25) = 20, f(50) = 50, f(100) = 80,

f
(1,3)
SH (X1) =

{
{{20}}, {{50}}

}
,

f
(1,3)
SH (X2) =

{
{{50}}, {{80}}

}
,

f
(2,3)
SH (X) =

{
f

(1,3)
SH (X1), f

(1,3)
SH (X2)

}
∈ P3(

[0, 100]
)
.

This represents a portfolio (across centers) of dose menus and their nested effect sets.
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Theorem 4.10. For (m, n) = (0, 0), the superhyperfunction f
(0,0)
SH : D → R≥0 satisfies

f
(0,0)
SH (D) = f(D),

and hence coincides with the classical dose–response function f .

Proof : Since P0(D) = D and P0([Emin, Emax]) = [Emin, Emax], by definition

f
(0,0)
SH (D) = f(D).

Therefore f
(0,0)
SH ≡ f . □

Theorem 4.11. For (m, n) = (0, 1), the superhyperfunction f
(0,1)
SH : D → P([Emin, Emax]) satisfies

f
(0,1)
SH (D) = { f(D)},

and hence coincides with the dose–response HyperFunction fH.

Proof : Here P1([Emin, Emax]) = P([Emin, Emax]), and by the m = 0, n = 1 case,

f
(0,1)
SH (D) = { f(D)} = fH(D).

Thus f
(0,1)
SH ≡ fH. □

5| Result: Fitness Function
5.1| Fitness Function
The fitness function assigns each genotype the expected number of viable offspring that genotype produces over
its lifetime (cf.[66, 67, 68, 69]).

Definition 5.1 (Fitness function). (cf.[70, 71, 72]) Let G be the set of all genotypes in a population. Define the
fitness function

w : G −→ R≥0, g 7−→ w(g) = E
[
number of offspring of an individual with genotype g

]
.

Example 5.2 (Classical fitness function from survival and fecundity). Let G = {gA, gB , gC} be three genotypes
in a laboratory Drosophila population. Model the expected viable offspring count as

w(g) = s(g) × F (g),

where s(g) ∈ [0, 1] is the probability of surviving to reproduction and F (g) ≥ 0 is the expected number of
offspring conditional on survival. Take

s(gA) = 0.75, F (gA) = 4.00 =⇒ w(gA) = 0.75 × 4.00 = 3.00,

s(gB) = 0.60, F (gB) = 5.50 =⇒ w(gB) = 0.60 × 5.50 = 3.30,

s(gC) = 0.90, F (gC) = 2.50 =⇒ w(gC) = 0.90 × 2.50 = 2.25.

Thus the classical fitness function w : G → R≥0 yields w(gA) = 3.00, w(gB) = 3.30, w(gC) = 2.25.
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5.2| Fitness HyperFunction
Fitness HyperFunction maps each genotype to a set of possible fitness values under varying environments,
capturing uncertainty, heterogeneity, and regime-dependent reproductive success.

Definition 5.3 (Fitness HyperFunction). Let G be the finite set of all genotypes in a population, and let

w : G −→ R≥0, g 7−→ w(g) = E[number of offspring of an individual with genotype g].

The Fitness HyperFunction is the map

wH : G −→ P(R≥0), g 7−→ { w(g)}.

Example 5.4 (Fitness HyperFunction captures environmental regimes). Suppose fitness depends on two
field environments: nutrient–rich (R) and nutrient–poor (P). For each genotype g, define two regime–specific
expectations

wR(g) = sR(g) FR(g), wP(g) = sP(g) FP(g),

and set the Fitness HyperFunction

wH(g) = { wR(g), wP(g) } ∈ P(R≥0).

Take concrete values:

sR(gA) = 0.80, FR(gA) = 4.00 ⇒ wR(gA) = 3.20, sP(gA) = 0.50, FP(gA) = 3.00 ⇒ wP(gA) = 1.50,

sR(gB) = 0.70, FR(gB) = 5.00 ⇒ wR(gB) = 3.50, sP(gB) = 0.60, FP(gB) = 3.50 ⇒ wP(gB) = 2.10.

Hence

wH(gA) = {3.20, 1.50}, wH(gB) = {3.50, 2.10}.

Each hypervalue is a subset of R≥0, so wH : G → P(R≥0) is a valid HyperFunction.

Theorem 5.5. The map wH is a Hyperfunction.

Proof : By definition, a Hyperfunction is any mapping whose domain is a classical set and whose codomain is a
powerset. Here the domain is G and the codomain is P(R≥0). For each g ∈ G, wH(g) = {w(g)} is a singleton
subset of R≥0. Therefore wH satisfies the definition of a Hyperfunction. □

Theorem 5.6. The classical fitness function w is recovered by taking the union over the image-sets of wH:

∀ g ∈ G, w(g) =
⋃

wH(g).

Hence wH generalizes w.

Proof : For any g ∈ G,
wH(g) = { w(g)},

so ⋃
wH(g) = w(g).

This shows that the classical fitness function w arises from the Hyperfunction wH by union, confirming that wH
indeed generalizes w. □
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5.3| Fitness SuperHyperFunction
Fitness SuperHyperFunction maps aggregated genotype sets to nested powersets of fitness values, enabling
multilevel analysis across diverse cohorts, subpopulations, breeding programs, regimes.

Definition 5.7 (Fitness (m, n)-SuperHyperFunction). Let G be a finite set of genotypes, and let

w : G −→ R≥0, g 7−→ w(g) = E[number of offspring of an individual with genotype g].

For integers m, n ≥ 0, define the (m, n)-SuperHyperFunction

w
(m,n)
SH : Pm(G) −→ Pn

(
R≥0

)
recursively by:

(i) If m = 0, then P0(G) = G, and for each g ∈ G,

w
(0,n)
SH (g) = {{· · · { w(g)} · · · }}︸ ︷︷ ︸

n nested braces

∈ Pn

(
R≥0

)
.

(ii) If m > 0, then Pm(G) = P
(
Pm−1(G)

)
, and for any X ⊆ Pm−1(G),

w
(m,n)
SH (X) =

{
w

(m−1,n)
SH (Y ) | Y ∈ X

}
⊆ Pn

(
R≥0

)
.

Example 5.8 ((m, n) = (1, 2) Fitness SuperHyperFunction: cohort of genotypes → nested fitness sets). Let
G = {gA, gB , gC} and use the classical expectations from the first example:

w(gA) = 3.00, w(gB) = 3.30, w(gC) = 2.25.

An input at level m = 1 is a set of genotypes X ∈ P(G); the (1, 2)-SuperHyperFunction returns a level-n = 2
object:

w
(1,2)
SH (X) =

{
{ w(g) }

∣∣ g ∈ X
}

∈ P2(R≥0).

For the cohort X = {gA, gB , gC},

w
(1,2)
SH ({gA, gB , gC}) =

{
{3.00}, {3.30}, {2.25}

}
∈ P2(R≥0).

Membership check: each {w(g)} ⊂ R≥0 lies in P(R≥0); collecting them yields an element of P
(
P(R≥0)

)
=

P2(R≥0).

Example 5.9 ((m, n) = (2, 3) Fitness SuperHyperFunction: subpopulations and program portfolios). Consider
two subpopulations using different genotype sets:

Y1 = {gA, gB}, Y2 = {gB , gC} ∈ P(G),

and a portfolio of breeding programs X = {Y1, Y2} ∈ P2(G) (level m = 2 input). Define recursively

w
(0,3)
SH (g) =

{
{{ w(g) }}

}
∈ P3(R≥0),

w
(1,3)
SH (Y ) =

{
w

(0,3)
SH (g)

∣∣ g ∈ Y
}

∈ P3(R≥0),

w
(2,3)
SH (X) =

{
w

(1,3)
SH (Y )

∣∣ Y ∈ X
}

∈ P3(R≥0).

Using w(gA) = 3.00, w(gB) = 3.30, w(gC) = 2.25, we get
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w
(1,3)
SH (Y1) =

{
{{3.00}}, {{3.30}}

}
,

w
(1,3)
SH (Y2) =

{
{{3.30}}, {{2.25}}

}
,

w
(2,3)
SH (X) =

{
w

(1,3)
SH (Y1), w

(1,3)
SH (Y2)

}
∈ P3(R≥0),

which is a set of (sets of) nested singletons of fitness values, aligned with the (2, 3) codomain.

Theorem 5.10. When (m, n) = (0, 0), the map

w
(0,0)
SH : G → R≥0, g 7→ w(g)

coincides with the classical fitness function w.

Proof : Since P0(G) = G and P0(R≥0) = R≥0, by definition

w
(0,0)
SH (g) = w(g)

for all g ∈ G. Hence w
(0,0)
SH ≡ w. □

Theorem 5.11. When (m, n) = (0, 1), the map

w
(0,1)
SH : G → P(R≥0), g 7→ { w(g)}

coincides with the Fitness HyperFunction wH.

Proof : Here P1(R≥0) = P(R≥0). By the m = 0, n = 1 case,

w
(0,1)
SH (g) = { w(g)} = wH(g),

so w
(0,1)
SH ≡ wH. □

6| Conclusion
To address this gap, the present paper introduced precise definitions of HyperFunctions and SuperHyperFunctions
tailored to chemical systems and examined their fundamental properties. For future work, we plan to investigate
further extensions of these concepts using Fuzzy Sets[73, 74, 75], Intuitionistic Fuzzy Sets[76], Neutrosophic
Sets (including QuadriPartitioned Neutrosophic Sets)[77, 78, 79, 80], Hesitant Fuzzy Sets[81, 82, 83], Meta
Sets[84, 85, 86], Picture Fuzzy Sets[87, 88, 89], q-rung orthopair fuzzy sets[90, 91], Spherical Fuzzy sets[92, 93, 94],
HyperFuzzy Sets[95, 96], and Plithogenic Sets[97, 98]. It is also expected that future research will advance in
exploring the chemical applications of the function concepts presented in this paper, the chemical applications of
fuzzy sets and their extensions, as well as studies employing computational experiments.
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