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Abstract

Hyperstructures and their hierarchical extensions, the Superhyperstructures, furnish a flexible framework
for modelling multilayered phenomena across a wide range of disciplines. Viewed through the lens of
functions, these ideas manifest as HyperFunctions and SuperHyperFunctions, whose values belong to
iterated powersets rather than to ordinary codomains. Although the structural and computational aspects
of hyperstructures have been explored well beyond mathematics—including notable work in chemistry—the
corresponding functional counterparts remain largely unexamined in that context. To address this gap,
the present paper introduces several precise definitions of HyperFunctions and SuperHyperFunctions
tailored to chemical systems and investigates their fundamental properties. These set-valued constructs
capture nested reactivity patterns and multi-step pathways, thereby opening new avenues for describing
complex chemical processes.

Keywords: Hyperfunction, Superhyperfunction, Hyperstructure, Superhyperstructure, Partition func-
tion, Reaction rate function, Dose-response function, Fitness function.

1| Introduction

This section fixes notation and recalls the basic notions used throughout the paper. Unless explicitly stated
otherwise, all sets considered here are finite.
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1.1] Hyperfunctions and n-Superhyperfunctions

Hyperstructures[1, 2, 3, 4] and their iterated, hierarchical counterparts, n-superhyperstructures[5, 6], serve as
general formalisms for modeling multilayered phenomena across diverse domains. Representative instances include
the SuperHyperGraph([7, 8, 9, 10] and the SuperHyperAlgebra[11, 12, 13, 14], each realizing a superhyperstructure
within a specific mathematical context. These frameworks have also been actively explored in chemistry and
chemical-reaction theory, where their ability to encode nested interactions is particularly advantageous[4, 15, 16,
17, 18, 19]. At the level of functions, the notions of hyperfunction and n-superhyperfunction generalize classical
single-valued maps to set-valued and, respectively, iterated set-valued outputs[20, 21]. These ideas have seen
active development in recent years across multiple disciplines[22, 23, 24]. For convenience, the key definitions
and statements required in this work are collected below.

Definition 1.1 (Universe). Let U be a nonempty finite set, called the universe (or base set). All subsequent
constructions—powersets, hyperstructures, and their iterates—are built on U.

Definition 1.2 (Power set[25]). The power set of U is
PU) = {AJACU}.

Definition 1.3 (Tterated powerset [26, 27, 28, 29]). For each integer n > 1, the n-fold iterated powerset of U is
defined recursively by

PYU)=PWU), P"TU)=P(P"(U)).
If one wishes to exclude the empty set at every stage, replace P with
PH(X) = P(X)\ {0}.
Remark 1.4. The iterated powerset construction organizes information in layers: elements of P(U) are subsets
of a universe U (single-layer groupings); elements of P2(U) = P(P(U)) are families of subsets (collections of
groupings); elements of P3(U) are families of families (portfolios of alternative collections), and so on. In many
practical settings, U is finite and one often uses the nonempty variant P*(X) = P(X) \ {0} at each level to
exclude degenerate choices.
Example 1.5 (Trip planning: days, itineraries, and options). Let the universe of activities be
Uact = {Sensoji (Se), teamLab (Te), Tsukiji (Ts), Onsen (On)}.

Single-day plans are subsets of activities, e.g.

D; = {Se, Ts}, Dy = {Te,On} € P(Upyct).

A two-day itinerary is a set of day plans, e.g.

Iy ={Dy, Dy} € P*(Uper)-

Suppose we also consider an alternative itinerary

Ip = {{Se, Te}, {Ts,0n}} € P?*(Upcr).

A traveler’s shortlist of choices is then a set of itineraries

O ={I4,Ig} € P3(Uper).
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If empty days are disallowed, replace P by P* at the appropriate level.
Example 1.6 (Role-based access control: privileges, roles, and policies). Let the universe of privileges be

Upriv = {read (r), write (w), deploy (d),audit (a)}.

A role is a subset of privileges (an element of P(Upiv)):

Rdev = {T',U)}, ROpS = {T7 d}7 Raudit = {Ta a}'

A department policy bundles roles (an element of P?(Upyiy)):

BEng = {Rdcw ROpS}v BRisk = {Raudit}~

Corporate policy options across regions form a family of such bundles
C= {BEng7 BRisk} S P3(Upriv)-
If a role must never be empty, use P* in place of P at the role level.

Example 1.7 (Manufacturing: parts, modules, and product lines). Let the universe of parts be

Uparts = {frame (Fr), battery (Ba),screen (Sc),SoC (So), camera (Ca)}.

A module/BOM slice is a subset of parts (element of P(Uparts)):

Mcore = {80}7 Mdisplay = {SC}, Mpower = {Ba}, Mhell = {FI‘}, Mcam = {Ca}

A product variant groups modules (element of P 2(Uparts)):

Vbasic = {Mcorea Mdisplaya Mpowera Mshell}7 Vpro = {MCOI‘67 Mdisplayu Mpower» Mshella Mcam}~

A product line portfolio is a set of variants

L= {Vbasica Vpro} S 73?’(vaarts)-
Requiring each module to be nonempty corresponds to using P* at the module level.
Example 1.8 (Academic planning: courses, term schedules, and degree plans). Let the universe of courses be

Uers = {Algebra (Alg), Analysis (Ana), CS (CS), Physics (Phy), Ethics (Eth)}.

A one-term schedule is a subset of courses:

SSpring = {Alg, Ana, CS} € P(Ucrs), SFall = {Phy, Eth} S 'P(Ucrs).

A degree plan is a set of term schedules:

DMath = {SSpring> SFall} S P2(Ucrs)-

A catalog of admissible degree plans is then
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A= {DMatthCS} S PB(Ucrs)~

Excluding empty terms or empty degree plans is modeled by replacing P with P* at the corresponding levels.

Definition 1.9 (Hyperoperation). (cf.[5]) A hyperoperation generalizes an ordinary binary operation by allowing
the output to be a set of results rather than a single element. Precisely, for a set .S, a map

o: 8x8—P(S)

is a hyperoperation, where P(S) denotes the power set of S.

Definition 1.10 (Hyperfunction). [21, 20] A hyperfunction is a map whose domain is a classical set and whose
codomain is its power set. Formally, for a set .5,

f i8S —PS).

For each x € S, the value f(x) C S is a subset of S. Thus a single input may be associated with multiple
outputs, in contrast to the single-valued case.

Example 1.11 (Ingredient pairing as a hyperfunction). Let the universe of ingredients be

S = {beef (B), tomato (T), basil (Ba), parmesan (P)}.

A pairing suggestion system assigns to each ingredient a set of compatible ingredients. Define a hyperfunction

f:8—=P(S) by

f(B) ={T,Ba},

f(T) = {Ba, P},
f(Ba) = {T, P},

f(P) = {B,T}

Verification: since |S| = 4, |P(S)| = 2% = 16. For each z € S we have f(z) C S, hence f(z) € P(S) and f
is a valid hyperfunction. This captures the real-world fact that a single ingredient can have multiple suitable
partners.

Example 1.12 (Airport one-hop connectivity as a hyperfunction). Let S be a finite set of airports, e.g.

S = {HND, KIX, CTS, FUK}.

Define f : S — P(S) where f(a) is the set of airports reachable from a by a direct flight (within the current
timetable):

F(HND) = {KIX,CTS}, f(KIX)= {HND,FUK}, f(CTS)={HND}, f(FUK)= {KIX}.

Each f(a) C S, so f is a hyperfunction. Practically, this aggregates multiple feasible next stops for a given
origin.
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Example 1.13 (Email triage labels as a hyperfunction). Let S be a set of labels used by a mail client:

S = {Work, Finance, Travel, Family}.

A rule engine maps a received message’s primary label to a set of additional labels:

f(Work) = {Finance}, f(Finance) = {Work, Travel}, f(Travel) = {Finance, Family}, f(Family) = 0.

Again f : S — P(S). The multi-valued output reflects that a single message may belong to several folders
simultaneously.

Definition 1.14 (SuperHyperOperations). [26] Let H be a nonempty set, and write P(H) for its power set.
Define the iterated power sets recursively by

PY(H)=H, P (H)=PP"H)) (k=>0).
Write P*(H) for the subset of P™(H) consisting of all nonempty elements at the outermost level.
An (m, n)-SuperHyperOperation is an m-ary map
olmm) . g™ 5 P(H).
If the codomain excludes the empty set (i.e., P,"(H)), we refer to the classical-type (m,n)-SuperHyperOperation;
if the codomain is P"(H) allowing the empty set, we obtain the neutrosophic-type variant. In both cases, these

maps extend hyperoperations to higher levels through iterated power-set targets.

Definition 1.15 (n-Superhyperfunction). [21, 24, 20] For an integer n > 2 and 0 < r < n, an n-
superhyperfunction is a map

f o PT(S) — P"(9),

where P *(S) denotes the k-fold iterated power set of a set S. Thus f sends subsets drawn from level 7 to objects
at level n.

Definition 1.16 ((m,n)-Superhyperfunction). (cf.[30, 21]) Let S be a nonempty set and let m,n > 1. An
(m, n)-superhyperfunction is a mapping

f o P™(S) — P™(S).
When m = r < n, this recovers the customary notion of an n-superhyperfunction P"(S) — P"™(S).
Example 1.17 ((m,n) = (1, 2) superhyperfunction for itinerary aggregation). Let the universe of activities be

S = {Sensoji (Se), teamLab (Te), Tsukiji (Ts), Onsen (On)}.

Elements of P(S) are day plans. Elements of P?(S) = P(P(S)) are itineraries (sets of day plans). Define
g: PL(S) — P%(S) by sending a chosen day plan to a family of two-day itineraries containing it. For

Dy ={Se, Ts} € P(S), Dy ={Te,On} € P(S), D;={Te} € P(S),

set
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Iy ={Dy,Dx} € P2(S),  Ip={Dy,Ds}ePS),

and define

g(Dy) = {I4,Ip} € P%(S).

Membership check (explicit):

D;CS = D; e P(S); {D1,D2} CP(S) = I4€P*S);

similarly Iz € P2(S), hence {I4,Ig} C P%(S) and g(D;) € P?(S). Thus g : P1(S) — P?(S) is a valid
(1, 2)-superhyperfunction.

Example 1.18 ((m,n) = (1, 2) superhyperfunction for role — policy bundles). Let the privilege universe be

S = {read (r), write (w), deploy (d), audit (a)}.

A role is a subset of privileges: Rgev = {r, w}, Rops = {7, d}, Raudit = {7, a} in P(S). An access policy is a set
of roles, i.e. an element of P?(9):

BEng = {Rdeva Rops}a Brisk = {Raudit}~

Define h : P1(S) — P%(S) by

h(Rdcv) = {BEnga BRisk}a h(Rops) = {BEng}-

Then h is a (1, 2)-superhyperfunction mapping a role (level 1) to a family of admissible policies (level 2).

Example 1.19 ((m,n) = (2, 3) superhyperfunction for regional policy portfolios). Continue with the previous S.
Elements of P?(S) are policies (sets of roles). Elements of P3(S) are policy portfolios (sets of policies). Consider
the input

X = {Rdev, Rops} € P*(S).

Define two region-specific policies

Bjp = {Rdev, Rops} € PQ(S)a Bys = {RdeVa ROPS’RaUdit} € P2(S)’

and set the portfolio

IT = {Bjp, Bus} € P3(9).

Define H : P%(S) — P3(S) by H(X) = II. Since II C P%(S), indeed IT € P3(S), so H is a valid (2,3)-
superhyperfunction mapping a set of roles (level 2) to a portfolio of regional policies (level 3).

Remark 1.20 (Cardinalities). If |S| = s, then |P(S)| = 2° and, inductively, |[P2(S)| = 22", |P3(S)| = 2225,
etc. The growth reflects the combinatorial explosion of feasible alternatives captured by superhyperfunctions.
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2| Result: Partition Function

Functions have been extensively developed in the field of Chemistry as well [31, 32, 33, 34, 35, 36]. In this paper,
we define the HyperFunction and SuperHyperFunction for several such functions. We begin with the Partition
Function.

2.1| Partition Function

A thermodynamic system is a well-defined collection of matter or radiation enclosed by boundaries, exchanging
heat and work with surroundings (cf.[37, 38, 39]). The partition function maps the inverse temperature to the
sum of Boltzmann factors across all microstates, revealing thermodynamic properties (cf.[40, 41, 42]).

Definition 2.1 (Microstate of a Thermodynamic System). (cf.[43, 44]) Let a thermodynamic system consist of
N classical particles confined to a region V' C R3. Denote by

I = VxR¥x---xVxR?

N times

the 6 N-dimensional phase space, whose coordinates are (¢1,p1,-..,9n,PN), where ¢; € V is the position and
p; € R3 the momentum of the ith particle. A microstate of the system is any point

w = (Q17p1>~-~7QN7PN) S P7

i.e. a complete specification of all particle positions and momenta.

Definition 2.2 (Partition function). (cf.[45, 46]) Let Q be the finite set of microstates of a thermodynamic
system, and let
E:Q—R

assign to each state s € Q its energy F(s). For inverse temperature § > 0, the partition function is the map

Z:Rsg — Rug, B — Z(B) = Y e PEW.
s€EQ

2.2| Partition HyperFunction

A Partition HyperFunction maps each microstate of a thermodynamic system to a set containing its Boltzmann
factor, thereby extending the classical partition function into a hyperfunction framework.

Definition 2.3 (Partition HyperFunction). Let Q be a finite set of microstates of a thermodynamic system,
and let
EFE:Q—R

assign to each state s € Q its energy E(s). Fix an inverse temperature 8 > 0. The Partition HyperFunction at 3
is the mapping

78 0 Q — P(Rs), s — {ePEGN,
Here P(Rx() denotes the power set of the positive reals.

Example 2.4 (Two-level atom as a Partition HyperFunction). Let the microstate set be Q@ = {g,e}
(ground/excited), with energies

E(g) =0, E(e)=A>0.

Fix an inverse temperature § > 0. The Partition HyperFunction at 3 is

th : Q0 — P(Rso), 5 — {e PEG))

Concretely,
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Z5(8) = {1}, Zi(e) ={e P2}

Verification (with numbers): if A =2 and 8 = 1, then

Zi(g) = {1},  Zi(e) = {e7?} ~ {0.1353}.
Recovering the classical partition function:
Z(B) =Y e PO = Z(U 25(5)) —14ePA,
s€Q s€EQ

Thus Z,fl encodes each Boltzmann factor as a singleton, whose union-and-sum yields the usual Z(0).

Example 2.5 (Three-conformer molecule as a Partition HyperFunction). Let Q = {43, A3, B} represent two
microstates of conformer A and one of conformer B, with

E(A)) = E(A)) =05, E(B)=12.

For g =1,

Z3,(A)) = {e %%} =~ {0.6065}, Z3,(A2) = {e "%} ~ {0.6065}, Z1,(B) = {e '?} =~ {0.3010}.

Hence

2(1) =3 e PO =% (U Z}_[(s)) ~ 0.6065 + 0.6065 + 0.3010 = 1.5140.
sEQ SEQ

Each image Z},(s) C R0, so Z}; : @ — P(Rso) is a valid HyperFunction.
Theorem 2.6. The map Zfi is indeed a Hyperfunction, since its codomain is a powerset.

Proof: By construction, Zfl has domain Q (a classical set) and codomain P(Rx), so it satisfies the definition of
a Hyperfunction. Moreover, for each s € €, ZZ(S) is a (nonempty) subset of R+, as required. O

Theorem 2.7. Let
Z:Rsy — Ruy, B Y e P
seQ
be the classical partition function. Then Z can be recovered from the Partition HyperFunction by

zB) = > (Jzus),

se

i.e. by summing the singleton subsets produced by Zf{, Hence th truly generalizes Z as a Hyperfunction.

Proof: For each s € €, by definition
UZits) = {70},

S UZs) = S e PO = z(p).

sEQ sEN

SO

This shows that the classical partition function Z arises from the Hyperfunction Zfl by summation over its
image-sets. U



25 Fujita et al. | Biocompd. 2(1) (2025) 17-41

2.3| Partition SuperHyperFunction
Partition SuperHyperFunction further generalizes this idea by mapping aggregated collections of microstates
to nested powersets of Boltzmann factors, enabling multi-level representation and analysis of thermodynamic
properties.
Definition 2.8 (Partition (m,n)-SuperHyperFunction). Let © be a finite set of microstates, and let
E:Q—R
assign to each s € Q its energy E(s). Fix 8 > 0. For any integers m,n > 0, define the map
Z3MP L PL(Q) — Pu(Rs)
recursively as follows:
(i) If m =0, then Py(Q2) = €, and for each s € Q,
0,n — s
25" (6) = (L {e P9} € Pu(Rso).

n nested braces

(ii) If m > 0, then P,,(Q) = P(Pm_l(Q)) and for each X C P,,,_1(9),
ZGP(x) = {287 Y) Y € XY C Py (Rs).

Example 2.9 ((m,n) = (1,2) Partition SuperHyperFunction: coarse-grained ensembles). Let 2 = {s1, s2, 83}
be microstates with energies

E(Sl) = 0, E(Sg) = 1, E(S3) =2.
Fix 8 = 1. By the recursive definition, for any X € P*(Q2) = P(Q),
ZSPN(X) = {2577 (s) | se X} e P2(Rso),
where Zé(}f)’l(s) = {{e"F®)}} € P%(R+o) is a doubly nested singleton.

Take X = {s9,s3}. Then

Z (s9) = {{e™'}} ~ {{0.3679} },
Z (s5) = {{e7?}} ~ {{0.1353}},

and hence

28 (s2059)) = { {1e™1} {8} | e PAR).

Membership check: each inner {e~ )} C Ry, so {{e*E(S)}} € P%(Rxy); collecting these for s € X yields an
element of P(P2(R>o)) = P3(Ro) if one more outer aggregation is applied. Here, by definition, we aggregate
exactly once over s € X, giving an object in P?(R~q), as required.

Example 2.10 ((m,n) = (2,3) Partition SuperHyperFunction: portfolios of ensembles). Continue with the
same 2 and 8 = 1. Let

Y1 = {51,82}, Yé = {82,83}, X = {Yl,YQ} € Pz(Q)

By recursion,
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ZEINX) = {2800 | Y e X} e PA(Rs),

with
Z8M ) =z ) | sev ), 250 s) = {{{e PO
Therefore,
280 ={ {{e ) (et = { e
28 ) = { {{e 3 e} )
Finally,

2,3),1 1,3),1 1,3),1
ZGPNx) = { 28D ), 26 ) | e PR,

which is a set of (sets of) nested singletons of Boltzmann factors, i.e. a portfolio of ensemble-level contributions
consistent with the (2,3) codomain.

Theorem 2.11. When (m,n) = (0,0), the map
Z‘(SO;IO)’ﬁ Q= Ryg, s e PE(s)

is exactly the classical Boltzmann-factor function. Moreover,

28) = > 255" (s) = Y P,

seQ SEQ

so the usual partition function arises by summation over this (0,0)-superhyperfunction.

Proof: Since Py(2) = Q and Py(Rsg) = Rsg, by definition Zg;?)’ﬂ(s) = ¢ PE(S), Summing these values over
all s € Q reproduces Z(8) = Z e PE() the classical partition function. O

S

Theorem 2.12. When (m,n) = (0,1), the map
ZODP Q5 PRag), s {e PP}

coincides with the Partition HyperFunction th.

Proof: Here Py(2) = Q and P1(Rsg) = P(Rso). By the m = 0 rule,
28" (s) = {eTPEC)),

which is exactly the definition of the Partition HyperFunction Zfz :Q = P(Rsg), s+ {e PEG)} O
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3| Result: Reaction rate Function

3.1] Reaction rate Function

Chemical reactions are processes where substances, through making and breaking chemical bonds, transform into
different substances, accompanied by energy changes (cf.[47, 16, 18, 48, 49]). The reaction rate function gives
reaction velocity as rate constant multiplied by reactant concentrations raised to their stoichiometric powers
(cf.[50, 51, 52, 53]).

Definition 3.1 (Reaction rate function). (cf.[54, 55, 56, 57]) Consider the elementary chemical reaction
aA + bB — products,
where a,b € N and the concentrations [A], [B] lie in R>g. The reaction rate function is
vt Ragx Rog — Roo, ([AL[B]) — v([AL[B]) = k[4]° [B]"

where k > 0 is the rate constant.

Example 3.2 (Bimolecular reaction, first order in each reactant). Consider A + B — products with a =b =1,
k=0.50 M~ts7! [A] =0.10 M, [B] = 0.25 M. Then
v = k[A][B] = 0.50 x 0.10 x 0.25 = 0.0125 Ms™!.

Calculation detail: 0.10 x 0.25 = 0.025, and 0.50 x 0.025 = 0.0125.

Example 3.3 (Termolecular rate law: 2NO + Oy — 2NO3). A common kinetic model uses v = k[NO]2[O4].
Take k = 4.0 M~2571 [NO] = 0.020 M, [O2] = 0.010 M. Then

v = 4.0 x (0.020)2 x 0.010 = 4.0 x 0.0004 x 0.010 = 4.0 x 0.000004 = 1.6 x 1077 Ms~".

3.2| Reaction rate HyperFunction

A Reaction rate HyperFunction maps each pair of reactant concentrations to a set containing its calculated
reaction rate value.

Definition 3.4 (Reaction rate HyperFunction). Consider the elementary chemical reaction
aA + bB — products,

where a,b € N and the concentrations [A], [B] lie in R>¢. Let k& > 0 be the rate constant. The reaction rate
HyperFunction is the map

(O VA Rzo X RZO — P(Rzo), ([A], [BD — {k} [A} @ [B]b}
Example 3.5 (Catalyst on/off uncertainty produces a set of possible rates). Suppose A+ B — P witha =b=1.
If a catalyst valve might be off or on, the rate constant is
ko =0.10 M™'s™' ko =0.60 M~ 157
For [A] =0.20 M, [B] = 0.30 M,
Vot = kot|A][B] = 0.10 x 0.20 x 0.30 = 0.006 M s,
Von = kon[A][B] = 0.60 x 0.20 x 0.30 = 0.036 Ms™'.

Thus
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vy ([A], [B]) = { Vo, von} = {0.006, 0.036 } C Rxy,

which is a valid HyperFunction output (a subset of Rx>¢).
Theorem 3.6. The map vy is a Hyperfunction.

Proof: By definition a Hyperfunction is any map whose domain is a classical set and whose codomain is a
powerset. Here the domain is R>o X R>¢ and the codomain is P(R>¢). Since for each ([A], [B]), vu([4], [B]) is
a (singleton) subset of R>, vy satisfies the definition of a Hyperfunction. O

Theorem 3.7. Let
v RZO X RZO — Rzo, ([A], [B]) — k [A]a [B} b
be the classical reaction rate function. Then for all [A], [B],
o([4],[B]) = Jon((Al [B]),

so v is recovered by taking the union over the image-sets of the Hyperfunction vy .

Proof: By definition of vy,
v (A} [B]) = {k[A]*[B]"},
hence
Jvn (4] [B]) = k[A]*[B]* = o([4],[B)).
This shows that the classical reaction rate function v is obtained from vy by union, demonstrating that vy
indeed generalizes v as a Hyperfunction. (I

3.3] Reaction rate SuperHyperFunction
A Reaction rate SuperHyperFunction generalizes this by mapping aggregated concentration sets to nested

powersets of possible reaction rate values.

Definition 3.8 (Reaction rate (m,n)-SuperHyperFunction). Let
D =RxoxRxo, v([A],[B]) = k[A]"[B]",
with a,b € N and k£ > 0. For integers m,n > 0, define
’Uén;fn) : Pm(D) — Pn(RZO>
recursively by:
(i) If m = 0, then Py(D) = D. For « = ([A],[B]) € D,
o§i @) = {{-{k[A"[B]} -1} € Pul®s0).

n nested braces

(i) If m > 0, then Py, (D) = P(Pp—1(D)). For any X C Pp,_1(D),
veEM(X) = {5 (Y)Y € X} C Pa(Rso).

Example 3.9 ((m,n) = (1,2): a set of operating points — a set of nested singletons). Let a = b = 1 and
k =0.50 M~!'s~!. Consider two operating points

71 = (0.10,0.20), @5 = (0.30,0.10) € D,

representing ([A], [B]) in M. Compute
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(1) = 0.50 x 0.10 x 0.20 = 0.010,
v(x2) = 0.50 x 0.30 x 0.10 = 0.015.

By the (m,n) = (1,2) rule,
o8 (a1, 22}) = { {0.010}, {0015} } € P*(Rs0).
€EP(R>0) €P(R>0)

Membership check: each {v(z;)} C Rx lies in P(Rx); collecting them yields an element of P(P(R>q)) =
P2(R>p).

Example 3.10 ((m,n) = (2,3): batches of operating sets — portfolios of nested outputs). Let a =2, b =1,
k =4.0 M~2s!. Define three points

= (0.020,0.010), 5 = (0.015,0.020), a5 = (0.025,0.008).

Compute the scalar rates

(1) = 4.0 x (0.020)% x 0.010 = 4.0 x 0.0004 x 0.010 = 1.6 x 1075,
v(22) = 4.0 x (0.015)% x 0.020 = 4.0 x 0.000225 x 0.020 = 1.8 x 1075,
v(x3) = 4.0 x (0.025)% x 0.008 = 4.0 x 0.000625 x 0.008 = 2.0 x 1075,

Form two batches (level m = 2 inputs)

Y, = {1‘1,.132}, Ys = {1‘3}, X = {Yi,Yé} (S PQ(D)

By recursion,

v&D (@) = {{{v(@) }}} € PP(Rso),

vg;)Yj {v(03) | x€Y4}€P (R>0),
WD (X)) = {05 (V) | Y e X} e PP(Rso).
Hence explicitly,
0§ (1) = { {{{1:6 x 107711}, {18 x 107°}}} },

o8 %) = { ({20 x 1071} |,

and

o (0 = { 6P (1), W) } e PAR0),
which is a portfolio (set) of batch-level nested outputs, consistent with the (2,3) codomain.

Theorem 3.11. When (m,n) = (0,0), the map
vsi iD= Rso,  ([A][B]) = k(4] [B]®

coincides with the classical reaction rate function v.
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Proof: Since Py(D) = D and Py(R>g) = R>¢, by definition

vsy ([A],[B]) = k [A]* [B]* = v([4], [B]),
SO vfgolf) =. O
Theorem 3.12. When (m,n) = (0,1), the map

v D = P(Rso),  ([ALIB]) — {k[4]°[B]"}

coincides with the Reaction rate HyperFunction vy : R>o X R>g = P(Rx>o).

Proof: Here Pi(R>0) = P(R>0). By the m =0, n =1 rule,

v& (1AL [B]) = {k[A]° [B]*} = vx([A], [B]),

o 0,(0,1)
SO Vgy = V- O

4| Result: Dose-response Function

4.1] Dose-response Function

Drug dose is the specific quantity of medication administered at one time to achieve desired therapeutic effect
safely and effectively (cf.[58, 59]). The Hill dose-response function transforms drug dose into continuous biological
effect bounded between minimal and maximal response levels (cf.[60, 61, 62]).

Definition 4.1 (Dose-response function). (cf.[63, 64, 65]) Let D € R>( denote the dose of a drug or toxin. Fix
parameters Enin, Fmax > 0, the Hill coefficient A > 0, and the half-maximal concentration EC5q > 0. The Hill

dose—response function is
D h

f:RZO — [Emina Ernax]7 D — f(D) = Emin + (Emax_Emin) m
50

Example 4.2 (Analgesic dose-response (Hill model)). Fix parameters Epin = 0, Fpnax = 100 (percent effect),
Hill coefficient h = 2, and EC59 = 50 mg. The Hill function is

D2
f(D) =100 - A7k
Explicit evaluations:
f(25) :100'5022745-2252 = 100~% = 100-% =100-0.2 = 20,
£(50) =100 - 5025732502 =100 - % = 50,
f(lOO):lOO-%(i)OQ:H)U%mlg_%: ~%:100~0.8:80.

Interpretation: 25,50,100 mg yield approximately 20%, 50%, and 80% of maximal analgesic effect.
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4.2| Dose-response HyperFunction

Dose-response HyperFunction maps each drug dose to a set of possible effect values, capturing parameter
uncertainty, patient variability, and regimes.

Definition 4.3 (Dose—response HyperFunction). Let

Dh

'R — Emin7Emax ) D)= Emin + Emax - Emin —h .
f >0 [ ] f( ) ( ) EC5hO —i—Dh

be the Hill dose-response function with parameters Fin, Emax > 0, h > 0, and EC5¢ > 0. The Dose-response
HyperFunction is

f?-[ : RZO — P([EminaEmax])a D+— {f(D)}

Example 4.4 (Dose-response HyperFunction: interpatient variability (pharmacogenomics)). Keep Epin = 0,
Epmax = 100, h = 2. Suppose population variability induces two plausible half-maximal doses EC5q € {40, 70} mg
(e.g., ultrarapid vs. poor metabolizers). Define the HyperFunction

fr : Rso — P([0,100]), D +— { f1o(D), fro(D) },

D2
where f,(D) = 100 - ———. For a fixed prescription D = 50 mg,

224+ D
502 2500 2500
50) =100+ ———— =100+ ——————— = 100 - ——— =~ 60.98,
F10(50) 402 + 502 1600 + 2500 4100
502 2500 2500
50) =100 ———— =100 —————— = 100 - = =~ 33.78.
Fr0(50) 702 + 502 4900 + 2500 7400

Hence f+(50) = {60.98, 33.78 } C [0,100], capturing heterogeneous patient responses to the same dose.

Theorem 4.5. The map fy is a Hyperfunction.

Proof: By definition, a Hyperfunction is any map whose domain is an ordinary set and whose codomain is a
powerset. Here the domain is R>¢ and the codomain is P([Ewmin, Fmax]). For each D >0, fy (D) = {f(D)} is a
singleton subset of [Euin, Pmax]- Thus f3; satisfies the requirements of a Hyperfunction. O

Theorem 4.6. The classical dose—response function f is recovered by union over the HyperFunction fy:

VD >0, f(D)=] (D)

Hence fy generalizes f.

Proof: By definition of fy,

Iu(D) ={f(D)},
S0

U u(D) = £(D).

Therefore the classical function f arises from the HyperFunction f3 by taking the union of its image-sets. [
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4.3| Dose-response SuperHyperFunction

Dose—response SuperHyperFunction maps aggregated dose sets to nested powersets of effects, enabling multi-level
analysis across titration menus, clinics, and cohorts.

Definition 4.7 (Dose-response (m,n)-SuperHyperFunction). Let
D h
ECY + Db’
with parameters Enin, Fmax > 0, Hill coefficient A > 0, and half-maximal concentration EC5g > 0. For integers
m,n > 0, define the (m,n)-SuperHyperFunction

“(37;;,71) : Pm(D) — Pn([Emina Emax])

D = RZOa f(D) = Emin + (Emax - Emin)

recursively by:

(i) If m =0, then Py(D) = D, and for each D € Ry,
sit’ (D)= {L (D)} 1} € Pu((Fmin, Bmas])-

n nested braces

(if) If m > 0, then P, (D) = P(’mel(D)) and for any X C P,,,_1(D),
(mn) { (m 1n) ‘xEX} Cc P, ([ mln?EIIlaX])'

Example 4.8 ((m,n) = (1,2) Dose-response SuperHyperFunction: titration menus — nested response sets).
Let D = R>q (dose space) and retain the first example’s parameters Eyin = 0, Enax = 100, h = 2, EC50 = 50 mg.
A clinic offers two titration options X = {25,100} C D. Define

fsi:P(D) — P([0.100),  f”(X) = {{7(25)}. {£(100)} }.
Using the calculated values f(25) = 20 and f(100) = 80,

52 ({25,100}) = { {20}, {80} } e P2([0,100]).

This encodes, at nesting level n = 2, the menu of dose options and their respective effects.

Example 4.9 ((m,n) = (2,3) Dose-response SuperHyperFunction: multi-center portfolios). Two hospitals use
different titration sets: X; = {25,50}, X5 = {50,100} C D. Form the portfolio X = {X7, Xo} € P?(D). Define
recursively

°3><d {{{£(d)}}} € P*([0,100]),
(V) :{fsqjl (d) | deY},
fg X)={s&P0) | yex).

Using f(25) = 20, f(50) = 50, £(100) = 80,
557 (x0) = { {204}, {{50}} },

FED () = { {{50}}, {{80}} },
f23)( ) {f(13)( ), f13)(X2)} c 7;3([0’100})_

This represents a portfolio (across centers) of dose menus and their nested effect sets.
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(0,0) .

Theorem 4.10. For (m,n) = (0,0), the superhyperfunction fgy ' : D — R>q satisfies

SO(D) = f(D),

and hence coincides with the classical dose—response function f.
Proof: Since Po(D) = D and Po([Ewmins Fmax]) = [Emin, Emax|, by definition

S2(D) = f(D).

Therefore f(0 0 = =f. O

Theorem 4.11. For (m,n) = (0,1), the superhyperfunction fé%;l) : D = P([Emin, Pmax)) satisfies

(D) = (7D},

and hence coincides with the dose—response HyperFunction f.

Proof: Here P1([Emin, Pmax]) = P([Emin, Emax)), and by the m = 0, n =1 case,

(D) = { 1(D)} = fu(D).
Thus £ = fu. O

5| Result: Fitness Function
5.1/ Fitness Function

The fitness function assigns each genotype the expected number of viable offspring that genotype produces over
its lifetime (cf.[66, 67, 68, 69]).

Definition 5.1 (Fitness function). (cf.[70, 71, 72]) Let G be the set of all genotypes in a population. Define the
fitness function
w:G — Rsg, g — w(g) = E[number of offspring of an individual with genotype g].

Example 5.2 (Classical fitness function from survival and fecundity). Let G = {ga, g5, g9c} be three genotypes
in a laboratory Drosophila population. Model the expected viable offspring count as

w(g) = s(g) x F(g),

where s(g) € [0,1] is the probability of surviving to reproduction and F(g) > 0 is the expected number of
offspring conditional on survival. Take

s(ga) =0.75, F(ga) =
s(gp) = 0.60, F(gm)
s(gc) =0.90,  F(gc)

400 = w(ga)=0.75 x 4.00 = 3.00,
550 = w(gp) = 0.60 x 5.50 = 3.30,
250 = w(ge)=0.90 x 2.50 = 2.25.

Thus the classical fitness function w : G — R>¢ yields w(ga) = 3.00, w(gg) = 3.30, w(gc) = 2.25.
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5.2| Fitness HyperFunction

Fitness HyperFunction maps each genotype to a set of possible fitness values under varying environments,
capturing uncertainty, heterogeneity, and regime-dependent reproductive success.

Definition 5.3 (Fitness HyperFunction). Let G be the finite set of all genotypes in a population, and let
w:G — Rsg, ¢ — w(g) = E[number of offspring of an individual with genotype g].
The Fitness HyperFunction is the map
wy: G — PRxo), g +— {w(g)}.
Example 5.4 (Fitness HyperFunction captures environmental regimes). Suppose fitness depends on two

field environments: nutrient-rich (R) and nutrient—poor (P). For each genotype g, define two regime—specific
expectations

wr(g) = sr(g) Fr(9), we(g) = sp(g) Fp(9),

and set the Fitness HyperFunction

wy(9) = {wr(g), we(g)} € PRxo).

Take concrete values:

SR(gA) = 0.80, FR(gA) =4.00 = wR(gA) = 3.20, Sp(gA) = 0.50, Fp(gA) =3.00 = wp(gA) = 1.50,
sR(gB) = 0.70, FR(gB) = 5.00 = wR(gB) = 3.50, Sp(gB) = 0.60, Fp(gB) = 3.50 = wp(gB) = 2.10.

Hence

wy(ga) = {3.20, 1.50},  wy(gp) = {3.50, 2.10}.

Each hypervalue is a subset of R>q, so wy : G — P(Rx¢) is a valid HyperFunction.
Theorem 5.5. The map wy is a Hyperfunction.

Proof: By definition, a Hyperfunction is any mapping whose domain is a classical set and whose codomain is a
powerset. Here the domain is G and the codomain is P(R>g). For each g € G, wy(g) = {w(g)} is a singleton
subset of R>(. Therefore wy, satisfies the definition of a Hyperfunction. O

Theorem 5.6. The classical fitness function w is recovered by taking the union over the image-sets of wyy :

Vge@, wlg) =Juwnlg)

Hence wy generalizes w.

Proof: For any g € G,

Jwn(g) = w(g).

This shows that the classical fitness function w arises from the Hyperfunction w by union, confirming that wy
indeed generalizes w. U
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5.3| Fitness SuperHyperFunction
Fitness SuperHyperFunction maps aggregated genotype sets to nested powersets of fitness values, enabling
multilevel analysis across diverse cohorts, subpopulations, breeding programs, regimes.
Definition 5.7 (Fitness (m,n)-SuperHyperFunction). Let G be a finite set of genotypes, and let
w:G@ — Rsg, ¢ — w(g) = E[number of offspring of an individual with genotype g].
For integers m,n > 0, define the (m,n)-SuperHyperFunction
win™ P (G) — Py, (Rso)

recursively by:

(i) If m =0, then Po(G) = G, and for each g € G,

wsi(9) = {{- {w(9)} - }} € Pu(Rxo).

n nested braces

(if) If m > 0, then P,,,(G) = ]P’(IF’m,l(G)) and for any X C P,,,_1(G),
(mn _{ (m 1n) |Y€X}C]P’(R>O)

Example 5.8 ((m,n) = (1,2) Fitness SuperHyperFunction: cohort of genotypes — nested fitness sets). Let
G ={ga,9B,9c} and use the classical expectations from the first example:

w(ga) = 3.00, w(gp) = 3.30, w(ge) = 2.25.

An input at level m = 1 is a set of genotypes X € P(G); the (1,2)-SuperHyperFunction returns a level-n = 2
object:

wS?(X) = {{w(g)} | ge X} € P*(Rso).

For the cohort X = {ga,95,9c},

w2 ({ga, 98, 90}) = { {3.00}, {3.30}, {2.25} } € P?(R>0).

Membership check: each {w(g)} C Rxg lies in P(Rx); collecting them yields an element of P(P(Rxq)) =
P2(R>p).

Example 5.9 ((m,n) = (2,3) Fitness SuperHyperFunction: subpopulations and program portfolios). Consider
two subpopulations using different genotype sets:

Y1 = {94,985}, Y> = {9B,9c} € P(G),

and a portfolio of breeding programs X = {Y1, Y2} € P?(G) (level m = 2 input). Define recursively

wi (9) = {{{wlg) }}} € PPRs0),
w‘(;,f) Y) {w(o 3) (9) | g€ Y} e P?’(RZO),
we (X) = {wS (V) | Y e X} € PP(Rao).

Using w(ga) = 3.00, w(gp) = 3.30, w(gc) = 2.25, we get



Hyperfunction and superhyperfunction in chemistry 36

ws; (V1) = { {{3.00}}, {{3.30}} },
ws (Ya) = { {{330}}, {{2:25}} },
wii) (X) = { wg) ), v (V) | € PAR),

which is a set of (sets of) nested singletons of fitness values, aligned with the (2,3) codomain.

Theorem 5.10. When (m,n) = (0,0), the map
wgolf) G —=Rso, g wl(g)

coincides with the classical fitness function w.

Proof: Since Py(G) = G and Py(R>¢) = R>, by definition

wii (9) = w(g)

for all g € G. Hence wfsolf) =w. (|

Theorem 5.11. When (m,n) = (0,1), the map

wii) 1 G = P(Rsg), g+ {w(g)}

coincides with the Fitness HyperFunction wy.

Proof: Here P1(R>q) = P(R>g). By the m =0, n =1 case,

wii (9) = {w(g)} = wrlg),

(01
SO Wgpr = Wy U

6| Conclusion

To address this gap, the present paper introduced precise definitions of HyperFunctions and SuperHyperFunctions
tailored to chemical systems and examined their fundamental properties. For future work, we plan to investigate
further extensions of these concepts using Fuzzy Sets[73, 74, 75], Intuitionistic Fuzzy Sets[76], Neutrosophic
Sets (including QuadriPartitioned Neutrosophic Sets)[77, 78, 79, 80], Hesitant Fuzzy Sets[81, 82, 83], Meta
Sets[84, 85, 86], Picture Fuzzy Sets[87, 88, 89], ¢-rung orthopair fuzzy sets[90, 91], Spherical Fuzzy sets[92, 93, 94],
HyperFuzzy Sets[95, 96], and Plithogenic Sets[97, 98]. It is also expected that future research will advance in
exploring the chemical applications of the function concepts presented in this paper, the chemical applications of
fuzzy sets and their extensions, as well as studies employing computational experiments.
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