

Paper Type: Original Article

Bioceramics for Orthopedic and Dental Applications: Materials, Performance, and Challenges

Vahideh Lahooti¹, Ayda Nikzad^{2,*}

¹ Department of Dentistry, Gilan University of Medical Sciences, Rasht, Iran; vahidehlahooti@yahoo.com.

² Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran; aydanikzad463@gmail.com.

Citation:

Received: 27 January 2025

Revised: 01 April 2025

Accepted: 20 May 2025

Lahooti, V., & Nikzad, A. (2025). Bioceramics for orthopedic and dental applications: Materials, performance, and challenges. *Biocompounds*, 2(2), 116–127.

Abstract

Bioceramics play a pivotal role in the reconstruction of orthopedic and dental hard tissues due to their optimized mechanical performance, chemical stability, and tunable biointeractivity. These materials are traditionally categorized into three major classes: bioinert, bioactive, and bioresorbable, each exhibiting distinct functional characteristics derived from their crystallographic structure and surface properties. Their clinical utility spans from enabling long-term osseointegration to serving as temporary scaffolds that support tissue regeneration. Nevertheless, inherent limitations, including structural brittleness, elastic modulus mismatch with native bone, and challenges in achieving precise control over in vivo degradation kinetics, continue to constrain their performance. To overcome these limitations, recent technological advancements have focused on developing mechanically enhanced nanocomposites, implementing nanoscale surface engineering to improve cellular responses, designing stimuli-responsive “smart” ceramics, and leveraging additive manufacturing (3D printing) to fabricate patient-specific implants with optimized microarchitectures. Future research directions include creating multifunctional bioceramic systems, synchronizing degradation profiles with host tissue regeneration dynamics, and integrating advanced Drug Delivery Systems (DDS) within bioceramic matrices. The overarching goal is to engineer next-generation bioceramics that exhibit superior regenerative potential and highly predictable biological integration, ultimately improving their long-term clinical efficacy.

Keywords: Bioceramics, Biomaterials, Surface engineering, Orthopedic implants, Dental implants.

1 | Introduction

Accelerated momentum in materials science mandates the genesis of biocompatible systems that effectively coalesce optimized mechanical integrity with exacting biological functionality for skeletal and dental restoration [1], [2]. Bioceramics assume a pivotal role, distinguished by their unique confluence of superlative mechanical characteristics (hardness, tribological resistance, strength), remarkable chemical inertness, and the capacity to elicit finely tuned physiological interactions. Their function transcends mere structural support,

 Corresponding Author: aydanikzad463@gmail.com

 <https://doi.org/10.48313/bic.vi.39>

 Licensee System Analytics. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

actively engaging in the modulation of cellular responses to promote tissue integration and remodeling [3], [4]. Bioceramics are taxonomically stratified by their host tissue interaction:

- I. Bioactive ceramics: exemplified by Calcium Hydroxyapatite ($\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$) and bioactive glasses, these possess the intrinsic facility for stable chemical osteobonding, thus potentiating osseointegration and osteoinductive processes.
- II. Bioresorbable ceramics: primarily Calcium Phosphate-based, engineered for gradual in vivo dissolution and concomitant replacement by nascent bone, serving as ephemeral, yet ideal, scaffolds.
- III. Bioinert Ceramics: including Alumina (Al_2O_3) and Zirconia (ZrO_2), these confer preeminent mechanical robustness and long-term biopersistence for load-bearing prostheses, eliciting a negligible host response (delimited by a thin fibrous interface).

Notwithstanding substantial progress, inherent material constraints such as intrinsic brittleness, low fracture toughness, elastic modulus disparity (inducing stress shielding), restricted soft tissue engagement, and formidable manufacturing costs continue to delimit optimal clinical performance [5]–[11].

Contemporary investigation addresses these impediments via innovative paradigms:

- I. Nanocomposites: integrating bioceramics with polymeric or metallic phases to fortify fracture resistance and augment biological efficacy concurrently [12].
- II. Advanced surface engineering: tailored nanoscale modification to optimize cellular adhesion, osteogenic lineage commitment, and antimicrobial attributes [5].
- III. Smart bioceramics: stimuli-responsive materials capable of dynamically modulating microenvironments or dispensing therapeutics in a controlled, localized manner [13].

The principal mandate of this review is to furnish a comprehensive, critical, and integrative synthesis of the chemical, structural, and functional dimensions of bioceramics. Particular emphasis is accorded to clinical deployment, extant limitations, and translational impedance. Furthermore, the review delineates prospective research frontiers, focusing on the rational design of intelligent, biofunctional nanocomposites and emerging applications in sophisticated drug delivery. The resulting insights constitute an authoritative compendium for optimizing next-generation bioceramics that achieve a synergistic equipoise between mechanical aptitude and salutary biological outcomes [14]–[19].

2 | Classification and Advanced Chemistry of Bioceramics in Biomedicine

Bioceramics used in biomedical applications are broadly categorized into three principal groups: bioinert, bioactive, and bioresorbable, based on their surface-mediated biological responses and interaction mechanisms with surrounding tissues [20]–[23]. This classification is fundamentally determined by their chemical stoichiometry, crystallographic arrangement, and surface reaction kinetics, parameters that collectively govern mechanical performance and their capacity for osseointegration or guided tissue regeneration.

2.1 | Bioinerts: Maximizing Structural Resilience

Bioinert ceramics are characterized by minimal biological interaction and are primarily employed to ensure long-term mechanical stability. Its interface with tissue is generally limited to the formation of a thin, passive fibrous capsule.

Structural chemistry and crystalline features

Al_2O_3 , hexagonal corundum and stabilized ZrO_2 , metastable tetragonal phase) represent the most prominent examples of bioinert ceramics. Al_2O_3 offers exceptional hardness and wear resistance, while ZrO_2 benefits

from stress-induced transformation toughening, significantly enhancing fracture toughness and providing reliable performance under cyclic mechanical loading.

Biological behavior and clinical applications

Due to their chemical inertness and surface stability, bioinert ceramics evoke minimal immunogenic response. Owing to their excellent fatigue resistance and durability, they are widely used in high-load clinical applications, including femoral heads, dental abutments, and joint replacement components.

2.2 | Bioactives: Promoting Osteogenic Integration

Bioactive ceramics are distinguished by their ability to form a direct physiochemical bond with bone tissues, thereby actively supporting osteoconduction and early osseointegration.

Phase chemistry and surface layer formation

$\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$, hexagonal phase) and bioactive glasses such as 45S5 ($\text{SiO}_2\text{--Na}_2\text{O}\text{--CaO}\text{--P}_2\text{O}_5$) constitute the core of this category. Their bioactivity originates from controlled ionic release, which induces the formation of a Carbonated Hydroxyapatite (HCap) surface layer, a critical mediator of osteoblast attachment and mineralization.

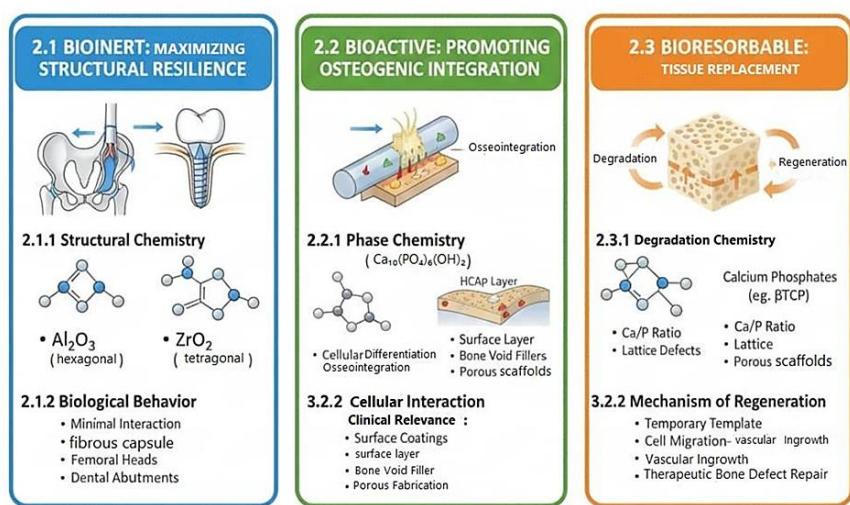
Cellular interaction and clinical relevance

Bioactive surfaces modulate cell proliferation, differentiation, and extracellular matrix formation. These materials are extensively used for coating metallic implants, filling bone defects, and designing porous scaffolds for bone tissue engineering applications [9].

2.3 | Bioresorbables: Orchestrating Tissue Replacement

Bioresorbable ceramics are specifically engineered to degrade in vivo at a controlled rate, enabling progressive substitution by newly formed bone.

Degradation chemistry and crystallographic considerations


This class includes Calcium Phosphate ceramics, such as β -Tricalcium Phosphate (β -TCP; $\text{Ca}_3(\text{PO}_4)_2$). The Ca/P molar ratio, degree of lattice imperfections, and porosity characteristics are critical determinants governing the dissolution rate and bioresorption profile of these materials.

Mechanism of regeneration and therapeutic applications

Bioresorbable ceramics act as temporary osteoconductive templates, supporting vascular ingrowth, cellular migration, and subsequent new bone formation. They are widely utilized in volumetric bone defect repair, scaffold fabrication, and regenerative procedures where synchronous balance between degradation kinetics and bone deposition is essential to maintain transient mechanical competence [25].

2.4 | Synthesis of Bioceramic Functional Responses

In summary, bioinert ceramics prioritize mechanical longevity and structural integrity; bioactive ceramics promote direct chemical bonding and cellular activation; and bioresorbable ceramics enable complete implant turnover through controlled in vivo degradation. A comprehensive understanding of the interplay between chemical composition, crystallographic features, and surface reaction kinetics is essential for designing next-generation smart bioceramics with tunable functionalities for advanced clinical implantology. A schematic overview of the significant classes of bioceramics in biomedicine is presented in *Fig. 1*. Also, *Table 1* provides a comparative overview of the most representative bioceramics currently used in orthopedic and dental applications, highlighting their mechanical properties, bioactivity level, degradation behavior, and primary clinical indications.

Fig. 1. Schematic classification of bioceramics (Bioinert, e.g., Al_2O_3 and ZrO_2 ; Bioactive, e.g., $\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$ and Bioactive Glasses; and Bioresorbable, e.g., Tricalcium Phosphate) based on their structural chemistry, biological interaction, and clinical applications in tissue engineering.

Table 1. Comparative overview of representative bioceramics for orthopedic and dental applications.

Material	Category	Young's Modulus (GPa)	Fracture Toughness (MPa·m ^{1/2})	Bioactivity Level	Degradation Rate	Main Applications
Al_2O_3	Bioinert	380–420	3–5	None	Negligible	Femoral heads, acetabular cups, dental abutments
Yttria-Stabilized ZrO_2 (Y-TZP)	Bioinert	200–210	8–12	Very low	Negligible	Hip/knee prostheses, dental crowns, and bridges
Hydroxyapatite (HA)	Bioactive	80–120	0.7–1.2	High	Very slow (years)	Coatings on metallic implants, bone grafts, and scaffolds
45S5 Bioglass	Bioactive	30–50	0.5–1.0	Very high	Months to years	Bone defect fillers, synthetic bone grafts, coatings
$\beta\text{-TCP}$	Bioresorbable	40–100	0.8–1.5	High	6–24 months	Non-load-bearing bone defects, porous scaffolds
Calcium silicate-based (e.g., MTA, Biodentine)	Bioactive	20–60	1.0–2.0	Very high	Weeks to months	Endodontic repair, pulp capping, root perforation

3 | Physicochemical and Mechanical Determinants of Bioceramic Functionality

As summarized in *Table 1*, significant differences in mechanical properties and degradation behavior exist among the three classes of bioceramics, which directly influence their clinical performance and limitations. The performance of bioceramics depends on the combined influence of their mechanical properties and surface physicochemical characteristics. Together, these factors determine both clinical durability and the efficacy of biointegration. Optimal functionality requires a delicate balance among rigidity, surface reactivity, and bulk stability [9].

3.1 | Mechanical Integrity and Fracture Limitations

Bioceramics possess high hardness and compressive strength due to dense ionic and covalent networks. However, their intrinsic brittleness and limited ability to resist crack propagation restrict their application in high-stress tensile or shear environments.

Advanced mechanical performance of bioinerts

Al_2O_3 serves as the benchmark for high-load components, offering exceptional hardness and wear resistance. Yttria-Stabilized ZrO_2 (Y-TZP, ZrO_2) utilizes martensitic phase transformation (transformation toughening) to enhance fracture toughness. This mechanism provides robust resistance to cyclic fatigue, ensuring long-term mechanical reliability [9].

Mechanical profile of bioactives and bioresorbables

$\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$, HA, and bioactive glasses (e.g., 45S5, $\text{SiO}_2\text{--Na}_2\text{O}\text{--CaO}\text{--P}_2\text{O}_5$ -based) exhibit lower fracture toughness than bioinerts and are primarily used as bioactive coatings. Porous Calcium Phosphates ($\text{Ca}_3(\text{PO}_4)_2$) demonstrate limited structural strength, restricting their use to non-load-bearing defect filling and scaffold applications.

3.2 | Interfacial Chemistry and Surface Reactivity

The surface thermodynamic and physicochemical properties of bioceramics govern initial molecular adsorption and the subsequent biological cascade. These properties influence protein uptake, cell attachment kinetics, and osteoconductive signaling [26].

Topography and pore architecture

Macropores ($>100\text{ }\mu\text{m}$) facilitate cell infiltration and angiogenesis, accelerating bone ingrowth. Micropores allow ion diffusion and metabolic exchange. An interconnected pore network is essential for guided tissue regeneration [13].

Surface energy and ion release

Bioactive ceramics release stimulatory ions that promote the heterogeneous nucleation of the HCap layer. This layer establishes a direct chemical bond with bone and enhances cellular signaling [27].

Phase stability and degradation kinetics

Bioinert ceramics maintain long-term structural integrity due to high phase stability. Bioresorbable ceramics, however, must achieve kinetic synchronization between their degradation rate and physiological osteogenesis. A mismatch may lead to premature loss of mechanical competence or delayed tissue replacement [28].

3.3 | Integrated Influence on Biological Response

The synergistic integration of optimal mechanical properties (hardness, stiffness) and controlled pore architecture ensures primary stability and tissue compatibility. Bioactive surfaces promote osteoblast

differentiation, while optimized load transfer mitigates stress shielding, supporting durable functional regeneration [8]–[16].

3.4 | Engineering Functional Bioceramics

Clinical efficacy arises from the convergence of mechanical and physicochemical attributes. Engineering next-generation bioceramics requires meticulous control over pore architecture, mechanical strength, surface reactivity, and degradation kinetics. Such control paves the way for nanostructured and adaptive composites tailored for advanced regenerative medicine [17].

4 | Advanced Clinical Deployment of Bioceramics in Orthopedics and Dentistry

Bioceramics, integrating superior mechanical performance with bioactivity, are central to modern restorative and prosthetic interventions in orthopedics and dentistry. They function as key components in load-bearing implants, joint surfaces, and active surface modifiers. Selection is guided by biomechanical requirements, cellular response, and host tissue constraints [29].

4.1 | Advanced Orthopedic Applications

Load-bearing implants and artificial joints

Bioinert ceramics (Al_2O_3 , Y-TZP) are widely used in high-load components due to their ultra-low wear and enduring mechanical stability. Hybridization with metals or nanocomposites mitigates brittleness and extends prosthetic life under high-stress conditions (Fig. 1) [16].

Fig. 1. Advanced artificial joint structure, combining bioinert ceramics such as Al_2O_3 and Y_2O_3 -stabilized ZrO_2 (Y-TZP), along with hybrid metal/nanocomposite materials, for enhanced durability, reduced wear, and high load-bearing performance.

Bioactive coatings for enhanced osseointegration

Bioactive and bioresorbable ceramics are applied as precision coatings on metallic implants (e.g., Ti). This approach reinforces primary mechanical interlocking and significantly accelerates osseointegration kinetics. For example, $\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2$ coatings on titanium implants enhance direct bone bonding [22].

Three-dimensional architectures for tissue engineering

Porous bioresorbables serve as sacrificial templates with controlled resorption profiles, creating a pro-regenerative microenvironment that supports cell migration, angiogenesis, and mineralized matrix deposition.

Ceramic polymer nanocomposites improve structural toughness, enabling advanced volumetric bone repair [18].

4.2 | Specialized Dental Applications

High-strength dental fixtures

Bioinert ceramics (ZrO_2 , Al_2O_3) provide exceptional mechanical resilience against complex occlusal forces. Bioactive coatings or bioresorbable fillers around the fixture accelerate peri-implant bone formation, improving stability (Fig. 2).

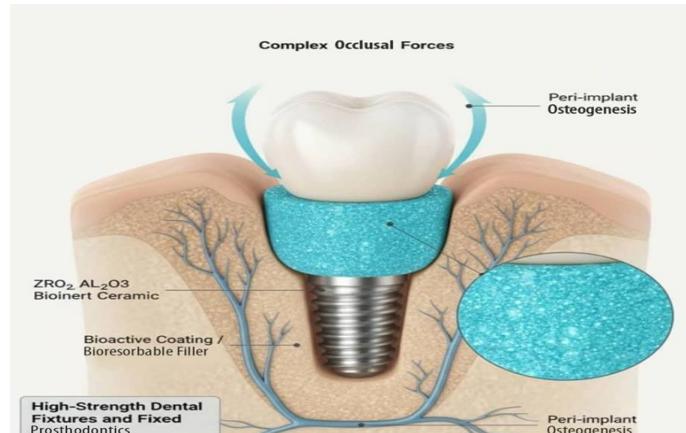


Fig. 2. Schematic illustration of the ZrO_2 / Al_2O_3 fixture with bioactive coating: high strength and rapid osseointegration.

Alveolar bone restoration and defect reconstruction

Bioactive ceramics function as osteoconductive graft substitutes, forming direct chemical bonds with host bone while releasing Ca^{2+} and PO_4^{3-} ions to promote osteoblast proliferation. Porous bioresorbable scaffolds allow guided, incremental reconstruction of alveolar defects [22].

Role in endodontic restoration

Bioactive calcium silicates are essential due to intrinsic antibacterial properties, strong adhesion, and the ability to induce pulp and peri-apical tissue repair. They are critical in root canal obturation and active tissue regeneration [1], [2].

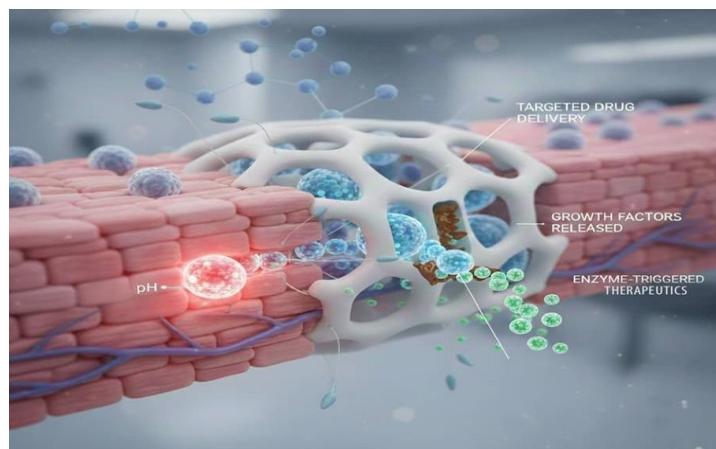
4.3 | Clinical Advantages and Limitations

Biological and functional advantages

Bioceramics enable direct chemical bonding with bone, promote cellular differentiation, provide long-term persistence, and reduce the risk of immune rejection. These attributes make them ideal for complex skeletal reconstructions.

Mechanical and operational limitations

Challenges include intrinsic brittleness, elastic modulus mismatch (which may cause stress shielding), high manufacturing costs, and operational complexity in soft tissue environments [5].


4.4 | Developmental Trajectories and Future Engineering

Nanocomposites and interface optimization

Research is focusing on reinforced nanocomposites and nanoscale surface engineering to enhance both mechanical integrity and bioactive response, developing materials with superior functional performance [30].

Smart bioceramics and targeted drug delivery

Emerging smart bioceramics can autonomously sense and respond to biological cues (e.g., pH, enzymes) to deliver growth factors or therapeutics in a controlled, on-demand manner. This strategy enables advanced, personalized regenerative solutions (Fig. 3) [16].

Fig. 3. Overview of Smart bioceramics enabling targeted drug delivery and personalized regenerative solutions.

5 | Core Challenges and Critical Constraints of Bioceramics in Clinical Practice

Despite significant advances in materials engineering, the intrinsic limitations and technological bottlenecks of bioceramics continue to impede their widespread adoption in advanced orthopedics and dentistry. These barriers span mechanical, biological, and manufacturing domains, necessitating multi-scale optimization [19].

5.1 | Structural and Mechanical Challenges

Intrinsic brittleness and limited fracture toughness

The ionic covalent architecture of bioceramics restricts plastic deformation. This results in pronounced brittleness and sub-optimal fracture toughness, limiting their use in dynamically loaded or axial weight-bearing applications [30].

Elastic modulus mismatch and stress shielding

The exceptionally high elastic modulus of bioinert ceramics disrupts physiological load transfer to adjacent bone. This mechanical incongruence can promote disuse atrophy (osteopenia), jeopardizing long-term functional stability and increasing the risk of aseptic loosening [24].

Limited load-bearing capacity of bioresorbables

Porous bioresorbable ceramics exhibit low flexural strength and may undergo premature degradation. It prevents the exclusive use in high-stress regions, necessitating polymeric reinforcement or the development of multiphase composites.

5.2 | Biological Response and Biocompatibility Hurdles

Non-integrative response of bioinert ceramics

Bioinert ceramics lack active chemical bonding with bone, often leading to the formation of a thick, non-functional fibrous capsule. This passive interlayer compromises biointegration and significantly reduces peri-implant osteogenesis [14].

Resorption kinetics challenges

Precise synchronization of dissolution rate with physiological bone formation is critical. Accelerated resorption may cause structural collapse, whereas slow resorption can impede tissue replacement, reducing therapeutic predictability [14]–[16].

Degradation byproducts and localized inflammation

Hydrolytic degradation can cause rapid ionic release, elevating local concentrations and provoking inflammatory responses. These effects interfere with normal osteogenesis and increase the risk of clinical failure.

5.3 | Technical and Manufacturing Challenges

Mechanical instability and coating delamination

Thin HA coatings are highly susceptible to cracking and delamination under dynamic loading. It compromises biofunctional performance and may release wear particles, triggering secondary inflammation [1], [2].

High production costs and commercialization barriers

Advanced bioceramics require high-capital equipment (e.g., ultra-high temperature sintering) and complex protocols. These demands result in elevated production costs, limiting global accessibility and commercial viability [3].

6 | Advanced Trends and Emerging Horizons in Bioceramic Engineering

Recent technological advancements have opened new horizons for enhancing the multifunctional performance of bioceramics in orthopedic and dental applications. The development of nanocomposite systems, ceramic polymer, and ceramic metal through structural mechanical synergy has led to increased fracture toughness, improved fatigue behavior, and enhanced bioactivity, significantly mitigating intrinsic brittleness [3]. Smart bioceramics provide responsive functionality to physiological stimuli and enable controlled release of drugs or growth factors. These materials can dynamically modulate surface properties in response to local pH variations, temperature changes, or electromagnetic fields, optimizing implant performance [28]. Nanoscale surface engineering with precisely defined nanostructures enhances cellular adhesion, peri-implant osteoconduction, and stable molecular-level integration between implants and host tissue [28]. Additive manufacturing technologies, including 3D printing and ceramic bioprinting, allow the fabrication of complex, fully customized geometries with precise control over pore architecture. Structural modifications of pore size and interconnectivity, combined with engineered drug release and intelligent nanotechnology, provide advanced therapeutic strategies to induce osteogenesis and accelerate functional tissue regeneration [5]–[7], [24].

7 | Future Research Trajectories in Bioceramic Development

Emerging research in bioceramics focuses on the holistic optimization of mechanical robustness and dynamic biological responsiveness. This paradigm shift aims to create a next-generation class of high-performance materials essential for advanced orthopedic and maxillofacial reconstruction [19].

7.1 | Smart and Reinforced Nanocomposites

The rational design of multiphase nanocomposites integrating ceramic phases with polymers or metals enhances fracture toughness and fatigue resilience. These materials also provide adaptive responsiveness to biological cues, such as pH variations, ensuring prolonged functional longevity [15]–[17].

7.2 | Nanoscale Surface Modification and Active Bioceramics

Precision nanoscale surface engineering using controlled nanostructural arrays optimizes cellular adhesion, osteogenic differentiation, and robust osteointegration at the molecular interface. Active bioceramics with regulated pharmacological release provide a potent platform for personalized therapeutic intervention and responsive tissue repair.

7.3 | Advanced Fabrication Technologies and Bioprinting

Sophisticated additive manufacturing techniques, including 3D printing and ceramic bioprinting, enable the fabrication of complex, functionally graded porous architectures with precisely defined internal geometries. These technologies allow the production of patient-specific scaffolds with optimal anatomical fidelity and seamless structural integration [19].

7.4 | Optimization of Biological Kinetics and Resorption

Targeted structural refinements aim to harmonize resorption kinetics with natural tissue regeneration rates. Controlled release of stimulatory ions enhances biofunctional activity, promotes efficient osteogenesis, mitigates inflammation, and improves long-term implant success [26], [31].

7.5 | Standardization and Interdisciplinary Methodologies

Establishing rigorous synthesis protocols and standardized assessment methodologies, combined with collaborative efforts across materials science, bioengineering, and clinical practice, is essential for developing next-generation implants with superior performance and fully personalized therapeutic capabilities [3].

8 | Conclusion

Bioceramics, as state-of-the-art biomaterials, exemplify the synergistic integration of superior mechanical resilience and precisely controlled bioactivity. They occupy a central and transformative role in skeletal and dental tissue reconstruction, offering unparalleled potential to enhance the clinical efficacy of both permanent implants and regenerative scaffolds. The strategic categorization of bioceramics into bioinert, bioactive, and bioresorbable classes provides a rational framework for the design and selection of constructs tailored to specific therapeutic applications. Critical physicochemical and mechanical attributes, including phase hardness, fracture toughness, controlled porosity, and surface reactivity, directly influence clinical outcomes. Optimizing these parameters enables the development of next-generation bioceramics with enhanced functional and regenerative performance. Clinical applications encompass critical load-bearing components, bioactive surface functionalization of metallic implants, porous tissue-engineered scaffolds, and specialized osseous restorations. Each application requires a careful balance between mechanical competence and cellular biocompatibility. Persistent intrinsic challenges such as ceramic brittleness, elastic modulus mismatch (stress shielding), resorption kinetics, and manufacturing-standardization constraints continue to limit full translational adoption.

Nevertheless, recent innovations, including reinforced nanocomposites, stimulus-responsive smart bioceramics, nanoscale surface engineering, and three-dimensional additive manufacturing, provide effective strategies to overcome these structural and functional limitations. Future research is expected to integrate emerging technologies, interdisciplinary methodologies, and precision engineering approaches. The ultimate goal is to develop the next generation of bioceramics that actively promote and optimize tissue regeneration,

deliver personalized therapeutic functionalities, respond adaptively to biological cues, and ensure long-term structural durability and consistent clinical performance of advanced implants and scaffolds.

References

- [1] Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. *Biomaterials*, 27(18), 3413–3431. <https://doi.org/10.1016/j.biomaterials.2006.01.039>
- [2] Buckley, R. W. (2007). *Progress in solid state chemistry research*. Nova Publishers. <https://B2n.ir/db2130>
- [3] U. S. Food & Drug, Administration. (2023). *Nanotechnology task force*. <https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force>
- [4] European Medicines Agency. (2024). *Guideline on quality, non-clinical and clinical requirements for investigational advanced therapy medicinal products in clinical trials - scientific guideline*. <https://www.ema.europa.eu/en/guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy-medicinal-products-clinical-trials-scientific-guideline>
- [5] Albrektsson, T., & Johansson, C. (2001). Osteoinduction, osteoconduction and osseointegration. *European spine journal*, 10(2), S96–S101. <https://doi.org/10.1007/s005860100282>
- [6] Gholami, A., Mohkam, M., Soleimanian, S., Sadraeian, M., & Lauto, A. (2024). Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. *Microsystems & nanoengineering*, 10(1), 113. <https://doi.org/10.1038/s41378-024-00743-z>
- [7] Naskar, A., Kilar, S., Baranwal, G., Kane, J., & Misra, S. (2024). Nanoparticle-based drug delivery for vascular applications. *Bioengineering*, 11(12), 1222. <https://doi.org/10.3390/bioengineering11121222>
- [8] Rawding, P. A., Bu, J., Wang, J., Kim, D. W., Drellich, A. J., Kim, Y., & Hong, S. (2022). Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. *Wiley interdisciplinary reviews: Nanomedicine and nanobiotechnology*, 14(2), e1752. <https://doi.org/10.1002/wnnan.1752>
- [9] Shan, X., Gong, X., Li, J., Wen, J., Li, Y., & Zhang, Z. (2022). Current approaches of nanomedicines in the market and various stage of clinical translation. *Acta pharmaceutica sinica b*, 12(7), 3028–3048. <https://doi.org/10.1016/j.apsb.2022.02.025>
- [10] Younis, M. A., Tawfeek, H. M., Abdellatif, A. A. H., Abdel-Aleem, J. A., & Harashima, H. (2022). Clinical translation of nanomedicines: Challenges, opportunities, and keys. *Advanced drug delivery reviews*, 181, 114083. <https://doi.org/10.1016/j.addr.2021.114083>
- [11] Wang, Y., Li, Z., Ouyang, J., & Karniadakis, G. E. (2020). Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. *Soft matter*, 16(20), 4756–4766. <https://doi.org/10.1039/D0SM00207K>
- [12] Alfutaimani, A. S., Alharbi, N. K., S. Alahmari, A., A. Alqabbani, A., & Aldayel, A. M. (2024). Exploring the landscape of lipid nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. *International journal of pharmaceutics: x*, 8, 100305. <https://doi.org/10.1016/j.ijpx.2024.100305>
- [13] Zhang, P., Xiao, Y., Sun, X., Lin, X., Koo, S., Yaremenko, A. V., ... , & Tao, W. (2023). Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. *Med*, 4(3), 147–167. <https://doi.org/10.1016/j.medj.2022.12.001>
- [14] Souto, E. B., Cano, A., Martins-Gomes, C., Coutinho, T. E., Zielińska, A., & Silva, A. M. (2022). Microemulsions and nanoemulsions in skin drug delivery. *Bioengineering*, 9(4), 158. <https://doi.org/10.3390/bioengineering9040158>
- [15] Tasnim, K. N., Rahman, A., Newaj, S. M., Mahmud, O., Monira, S., Khan, T. Z., ... , & Sharker, S. M. (2024). Trackable liposomes for in vivo delivery tracing toward personalized medicine care under NIR light on skin tumor. *ACS applied bio materials*, 7(5), 3190–3201. <https://doi.org/10.1021/acsabm.4c00203>
- [16] Ginebra, M. P., Traykova, T., & Planell, J. A. (2006). Calcium phosphate cements as bone drug delivery systems: A review. *Journal of controlled release*, 113(2), 102–110. <https://doi.org/10.1016/j.jconrel.2006.04.007>

[17] Zhou, Q., Su, X., Wu, J., Zhang, X., Su, R., Ma, L., . . . , & He, R. (2023). Additive manufacturing of bioceramic implants for restoration bone engineering: Technologies, advances, and future perspectives. *ACS biomaterials science & engineering*, 9(3), 1164–1189. <https://doi.org/10.1021/acsbiomaterials.2c01164>

[18] Song, X., Segura-Egea, J. J., & Díaz-Cuenca, A. (2023). Sol–Gel technologies to obtain advanced bioceramics for dental therapeutics. *Molecules*, 28(19), 6967. <https://doi.org/10.3390/molecules28196967>

[19] Vaiani, L., Boccaccio, A., Uva, A. E., Palumbo, G., Piccininni, A., Guglielmi, P., . . . , & Ballini, A. (2023). Ceramic materials for biomedical applications: An overview on properties and fabrication processes. *Journal of functional biomaterials*, 14(3), 146. <https://doi.org/10.3390/jfb14030146>

[20] Wang, X., Xiao, Y., Song, W., Ye, L., Yang, C., Xing, Y., & Yuan, Z. (2023). Clinical application of calcium silicate-based bioceramics in endodontics. *Journal of translational medicine*, 21(1), 853. <https://doi.org/10.1186/s12967-023-04550-4>

[21] Safarzadeh, S., Mozafari, M. R., & Naghib, S. M. (2024). Chitosan-incorporated bioceramic-based nanomaterials for localized release of therapeutics and bone regeneration: An overview of recent advances and progresses. *Current organic chemistry*, 28(15), 1190–1214. <https://doi.org/10.2174/0113852728304647240426201554>

[22] Naghib, S. M., Amiri, S., & Mozafari, M. R. (2024). Stimuli-responsive chitosan-based nanocarriers for drug delivery in wound dressing applications: A review. *Carbohydrate polymer technologies and applications*, 7, 100497. <https://doi.org/10.1016/j.carpta.2024.100497>

[23] Joseph, A., & Uthirapathy, V. (2024). A systematic review of the contribution of additive manufacturing toward orthopedic applications. *ACS omega*, 9(44), 44042–44075. <https://doi.org/10.1021/acsomega.4c04870>

[24] Lyons, J. G., Plantz, M. A., Hsu, W. K., Hsu, E. L., & Minardi, S. (2020). Nanostructured biomaterials for bone regeneration. *Frontiers in bioengineering and biotechnology*, 8, 922. <https://doi.org/10.3389/fbioe.2020.00922>

[25] Zafar, M. J., Zhu, D., & Zhang, Z. (2019). 3D printing of bioceramics for bone tissue engineering. *Materials*, 12(20), 3361. [10.3390/ma12203361](https://doi.org/10.3390/ma12203361)

[26] Piconi, C., & Sprio, S. (2021). Oxide bioceramic composites in orthopedics and dentistry. *Journal of composites science*, 5(8), 206. <https://doi.org/10.3390/jcs5080206>

[27] Motallebi Tala Tapeh, S., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. *Materials science and engineering: C*, 119, 111517. <https://doi.org/10.1016/j.msec.2020.111517>

[28] Ferreira, M. A. M., & Filipe, J. A. (2022). *Ethical considerations on nanotechnology*. <https://doi.org/10.48550/arXiv.2202.01063>

[29] Belluomo, R., Khodaei, A., & Amin Yavari, S. (2023). Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects. *Acta biomaterialia*, 156, 234–249. <https://doi.org/10.1016/j.actbio.2022.08.042>

[30] Chou, W. C., Canchola, A., Zhang, F., & Lin, Z. (2025). Machine learning and artificial intelligence in nanomedicine. *Wiley interdisciplinary reviews: Nanomedicine and nanobiotechnology*, 17(4), e70027. <https://doi.org/10.1002/wnan.70027>

[31] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of metformin hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics. *International journal of nano dimension*, 9(3), 298–313. (In Persian). https://journals.iau.ir/article_659887_c9737398d6ce3f78d13a1fa5900b2c17.pdf