Recent Improvements in Gene Regulations and Immunology
Keywords:
Cell, Gene, Immune, TherapiesAbstract
The possibility of employing genetically altered cells as therapeutic agents have been firmly proven by the effectiveness of Chimeric Antigen Receptor (CAR) T cell treatment against haematological tumours. Even while cell therapy has made significant strides, its entire range of advantageous uses is yet unknown. The ability to apply genetic control circuits, which permits varied signal detecting and logical processing for the best response in the intricate tumour microenvironment, is one of the special benefits of cell treatments. We will first discuss design factors for cell therapy control circuits that meet clinical requirements from this angle. After contrasting and comparing important aspects of some of the most recent advancements in control circuit design, we'll talk about possible future paths.
References
[1] Lim, W. A. (2010). Designing customized cell signalling circuits. Nature reviews molecular cell biology, 11(6), 393–403. DOI:10.1038/nrm2904
[2] Alison, M. R., Poulsom, R., Forbes, S., & Wright, N. A. (2002). An introduction to stem cells. The journal of pathology: a journal of the pathological society of great britain and ireland, 197(4), 419–423. https://pathsocjournals.onlinelibrary.wiley.com/doi/abs/10.1002/path.1187
[3] Bailey, S. R., & Maus, M. V. (2019). Gene editing for immune cell therapies. Nature biotechnology, 37(12), 1425–1434. DOI:10.1038/s41587-019-0137-8
[4] Marusyk, A., Almendro, V., & Polyak, K. (2012). Intra-tumour heterogeneity: a looking glass for cancer? Nature reviews cancer, 12(5), 323–334. DOI:10.1038/nrc3261
[5] Meacham, C. E., & Morrison, S. J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature, 501(7467), 328–337. DOI:10.1038/nature12624
[6] Lim, W. A., & June, C. H. (2017). The principles of engineering immune cells to treat cancer. Cell, 168(4), 724–740. DOI:10.1016/j.cell.2017.01.016
[7] 67. Ruella, M., Barrett, D.M., Kenderian, S.S., Shestova, O., Hofmann, T.J., Perazzelli, J., Klichinsky, M., Aikawa, V., Nazimuddin, F., & Kozlowski, M. (2016). Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. Journal of clinical. investigation, 126(10), 3814–3826. https://doi.org/10.1172/JCI87366
[8] Grada, Z., Hegde, M., Byrd, T., Shaffer, D. R., Ghazi, A., Brawley, V. S., … Ahmed, N. (2013). TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Molecular therapy nucleic acids, 2, 1–11. DOI:10.1038/mtna.2013.32
[9] 28. Hegde, M., Mukherjee, M., Grada, Z., Pignata, A., Landi, D., Navai, S.A., Wakefield, A., Fousek, K., Bielamowicz, K., & Chow, K. K. (2016). Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumour antigen escape. Journal of clinical investigation, 126(8), 3036–3052. https://www.jci.org/articles/view/83416/pdf
[10] Zah, E., Lin, M.-Y., Silva-Benedict, A., Jensen, M. C., & Chen, Y. Y. (2016). T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer immunology research, 4(6), 498–508. https://aacrjournals.org/cancerimmunolres/article-abstract/4/6/498/468518
[11] Lanitis, E., Poussin, M., Klattenhoff, A. W., Song, D., Sandaltzopoulos, R., June, C. H., & Powell Jr, D. J. (2013). Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer immunology research, 1(1), 43–53. https://aacrjournals.org/cancerimmunolres/article-abstract/1/1/43/466746
[12] Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M., & Sadelain, M. (2013). Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nature biotechnology, 31(1), 71–75. DOI:10.1038/nbt.2459
[13] Fedorov, V. D., Themeli, M., & Sadelain, M. (2013). PD-1–and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Science translational medicine, 5(215), 172–215. https://www.science.org/doi/abs/10.1126/scitranslmed.3006597
[14] Roybal, K. T., Rupp, L. J., Morsut, L., Walker, W. J., McNally, K. A., Park, J. S., & Lim, W. A. (2016). Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell, 164(4), 770–779. DOI:10.1016/j.cell.2016.01.011
[15] Cho, J. H., Collins, J. J., & Wong, W. W. (2018). Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell, 173(6), 1426–1438. DOI:10.1016/j.cell.2018.03.038
[16] Zhu, I., Liu, R., Garcia, J. M., Hyrenius-Wittsten, A., Piraner, D. I., Alavi, J., … Roybal, K. T. (2022). Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell, 185(8), 1431–1443. DOI:10.1016/j.cell.2022.03.023
[17] Lajoie, M. J., Boyken, S. E., Salter, A. I., Bruffey, J., Rajan, A., Langan, R. A., … Baker, D. (2020). Designed protein logic to target cells with precise combinations of surface antigens. Science, 369(6511), 1637–1643. DOI:10.1126/science.aba6527
[18] Cho, J. H., Okuma, A., Sofjan, K., Lee, S., Collins, J. J., & Wong, W. W. (2021). Engineering advanced logic and distributed computing in human CAR immune cells. Nature communications, 12(1), 1–14. https://www.nature.com/articles/s41467-021-21078-7
[19] Richards, R. M., Zhao, F., Freitas, K. A., Parker, K. R., Xu, P., Fan, A., … Liu, J. (2021). NOT-gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity. Blood cancer discovery, 2(6), 648–665. https://aacrjournals.org/bloodcancerdiscov/article-abstract/2/6/648/665888
[20] Tao, L., Farooq, M. A., Gao, Y., Zhang, L., Niu, C., Ajmal, I., … Yao, J. (2020). Cd19-CAR-T cells bearing a Kir/Pd-1-based inhibitory car eradicate Cd19+ Hla-C1− malignant B cells while sparing Cd19+ Hla-C1+ healthy B cells. Cancers, 12(9), 1–17. https://www.mdpi.com/2072-6694/12/9/2612
[21] Hamburger, A. E., DiAndreth, B., Cui, J., Daris, M. E., Munguia, M. L., Deshmukh, K., … Kamb, A. (2020). Engineered T cells directed at tumors with defined allelic loss. Molecular immunology, 128, 298–310. DOI:10.1016/j.molimm.2020.09.012
[22] Hwang, M. S., Mog, B. J., Douglass, J., Pearlman, A. H., Hsiue, E. H.-C., Paul, S., … Gabelli, S. B. (2021). Targeting loss of heterozygosity for cancer-specific immunotherapy. Proceedings of the national academy of sciences, 118(12), 1–10. https://www.pnas.org/doi/pdf/10.1073/pnas.2022410118
[23] Sandberg, M. L., Wang, X., Martin, A. D., Nampe, D. P., Gabrelow, G. B., Li, C. Z., … Kamb, A. (2022). A carcinoembryonic antigen-specific cell therapy selectively targets tumor cells with HLA loss of heterozygosity in vitro and in vivo. Science translational medicine, 14(634). DOI:10.1126/scitranslmed.abm0306
[24] Urbanska, K., Lanitis, E., Poussin, M., Lynn, R. C., Gavin, B. P., Kelderman, S., … Powell Jr, D. J. (2012). A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer research, 72(7), 1844–1852. DOI:10.1158/0008-5472.CAN-11-3890
[25] Lohmueller, J. J., Ham, J. D., Kvorjak, M., & Finn, O. J. (2018). mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology, 7(1). https://www.tandfonline.com/doi/abs/10.1080/2162402X.2017.1368604
[26] Ma, J. S. Y., Kim, J. Y., Kazane, S. A., Choi, S., Yun, H. Y., Kim, M. S., … Sun, S. B. (2016). Versatile strategy for controlling the specificity and activity of engineered T cells. Proceedings of the national academy of sciences, 113(4). https://www.pnas.org/doi/abs/10.1073/pnas.1524193113
[27] Morsut, L., Roybal, K. T., Xiong, X., Gordley, R. M., Coyle, S. M., Thomson, M., & Lim, W. A. (2016). Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell, 164(4), 780–791. https://www.cell.com/cell/fulltext/S0092-8674(16)00052-0
[28] Roybal, K. T., Williams, J. Z., Morsut, L., Rupp, L. J., Kolinko, I., Choe, J. H., … Lim, W. A. (2016). Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell, 167(2), 419–432. https://www.cell.com/cell/fulltext/S0092-8674(16)31244-2
[29] Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L., & Lim, W. A. (2018). Programming self-organizing multicellular structures with synthetic cell-cell signaling. Science, 361(6398), 156–162. DOI:10.1126/science.aat0271
[30] Williams, J. Z., Allen, G. M., Shah, D., Sterin, I. S., Kim, K. H., Garcia, V. P., … Lim, W. A. (2020). Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science, 370(6520), 1099–1104. DOI:10.1126/science.abc6270
[31] Choe, J. H., Watchmaker, P. B., Simic, M. S., Gilbert, R. D., Li, A. W., Krasnow, N. A., … Celli, A. (2021). SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science translational medicine, 13(591), eabe7378. https://www.science.org/doi/10.1126/scitranslmed.abe7378
[32] Srivastava, S., Salter, A. I., Liggitt, D., Yechan-Gunja, S., Sarvothama, M., Cooper, K., … Rader, C. (2019). Logic-gated ROR1 chimeric antigen receptor expression rescues T cell-mediated toxicity to normal tissues and enables selective tumor targeting. Cancer cell, 35(3), 489–503. https://www.cell.com/cancer-cell/fulltext/S1535-6108(19)30098-4
[33] Tang, T., Huang, X., Zhang, G., Hong, Z., Bai, X., & Liang, T. (2021). Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal transduction and targeted therapy, 6(1), 72. https://www.nature.com/articles/s41392-020-00449-4
[34] Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature reviews cancer, 5(4), 263–274. https://www.nature.com/articles/nrc1586
[35] Chang, W. H., & Lai, A. G. (2020). The hypoxic tumour microenvironment: a safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer letters, 487, 34–44. DOI:10.1016/j.canlet.2020.05.011
[36] Juillerat, A., Marechal, A., Filhol, J. M., Valogne, Y., Valton, J., Duclert, A., … Poirot, L. (2017). An oxygen sensitive self-decision making engineered CAR T-cell. Scientific reports, 7(1), 39833. https://www.nature.com/articles/srep39833
[37] Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., & Rosenberg, S. A. (2010). Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular therapy, 18(4), 843–851. https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(16)32342-5
[38] Kosti, P., Opzoomer, J. W., Larios-Martinez, K. I., Henley-Smith, R., Scudamore, C. L., Okesola, M., … Larcombe-Young, D. (2021). Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors. Cell reports medicine, 2(4). https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(21)00043-4?uuid=uuid%3A768e3bb7-28b0-4179-86c4-5ff4a2998ac9
[39] Han, X., Bryson, P. D., Zhao, Y., Cinay, G. E., Li, S., Guo, Y., … Wang, P. (2017). Masked chimeric antigen receptor for tumor-specific activation. Molecular therapy, 25(1), 274–284. https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(16)45366-9
[40] Bell, M., & Gottschalk, S. (2021). Engineered cytokine signaling to improve CAR T cell effector function. Frontiers in immunology, 12, 684642. https://pubmed.ncbi.nlm.nih.gov/34177932/
[41] Hoyos, V., Savoldo, B., Quintarelli, C., Mahendravada, A., Zhang, M., Vera, J., … Dotti, G. (2010). Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia, 24(6), 1160–1170. https://www.nature.com/articles/leu201075
[42] Liu, Y., Di, S., Shi, B., Zhang, H., Wang, Y., Wu, X., … Jiang, H. (2019). Armored inducible expression of il-12 enhances antitumor activity of glypican-3–targeted chimeric antigen receptor–engineered T cells in hepatocellular carcinoma. The journal of immunology, 203(1), 198–207. https://journals.aai.org/jimmunol/article/203/1/198/107319?utm_source=TrendMD&utm_medium=cpc&utm_campaign=J_Immunol_TrendMD_0
[43] Berraondo, P., Sanmamed, M. F., Ochoa, M. C., Etxeberria, I., Aznar, M. A., Pérez-Gracia, J. L., … Melero, I. (2019). Cytokines in clinical cancer immunotherapy. British journal of cancer, 120(1), 6–15. https://www.nature.com/articles/s41416-018-0328-y
[44] Ahmadzadeh, M., & Rosenberg, S. A. (2006). IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients. Blood, 107(6), 2409–2414. DOI:10.1182/blood-2005-06-2399
[45] Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J., & Abbas, A. K. (1998). Biochemical mechanisms of IL-2–regulated Fas-mediated T cell apoptosis. Immunity, 8(5), 615–623. https://www.cell.com/immunity/fulltext/S1074-7613(00)80566-X
[46] Gattinoni, L., Klebanoff, C. A., Palmer, D. C., Wrzesinski, C., Kerstann, K., Yu, Z., … Restifo, N. P. (2005). Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. The journal of clinical investigation, 115(6), 1616–1626. https://www.jci.org/articles/view/24480
[47] Krenciute, G., Prinzing, B. L., Yi, Z., Wu, M.-F., Liu, H., Dotti, G., … Gottschalk, S. (2017). Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer immunology research, 5(7), 571–581. https://aacrjournals.org/cancerimmunolres/article-abstract/5/7/571/468806
[48] Yang, Z.-Z., Grote, D. M., Ziesmer, S. C., Niki, T., Hirashima, M., Novak, A. J., … Ansell, S. M. (2012). IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. The journal of clinical investigation, 122(4), 1271–1282. https://www.jci.org/articles/view/59806
[49] Shapiro, V. S., Mollenauer, M. N., & Weiss, A. (1998). Cutting edge: Nuclear factor of activated T cells and AP-1 are insufficient for IL-2 promoter activation: requirement for CD28 up-regulation of RE/AP. The journal of immunology, 161(12), 6455–6458.
[50] Jain, J., Loh, C., & Rao, A. (1995). Transcriptional regulation of the IL-2 gene. Current opinion in immunology, 7(3), 333–342. https://www.sciencedirect.com/science/article/pii/0952791595801073
[51] Riegel, J. S., Corthesy, B., Flanagan, W. M., & Crabtree, G. R. (1992). Regulation of the interleukin-2 gene. Interleukins: molecular biology and immunology, 51, 266–298. https://karger.com/Article/Abstract/420762
[52] Koneru, M., Purdon, T. J., Spriggs, D., Koneru, S., & Brentjens, R. J. (2015). IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology, 4(3), 1–11. https://www.tandfonline.com/doi/abs/10.4161/2162402X.2014.994446
[53] Chmielewski, M., & Abken, H. (2017). CAR T cells releasing IL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell reports, 21(11), 3205–3219.
[54] Zimmermann, K., Kuehle, J., Dragon, A. C., Galla, M., Kloth, C., Rudek, L. S., … Meyer, J. (2020). Design and characterization of an all-in-one lentiviral vector system combining constitutive anti-GD2 CAR expression and inducible cytokines. Cancers, 12(2), 375. https://www.mdpi.com/2072-6694/12/2/375
[55] Guo, T., Ma, D., & Lu, T. K. (2022). Sense-and-respond payload delivery using a novel antigen-inducible promoter improves suboptimal CAR-T activation. ACS synthetic biology, 11(4), 1440–1453. https://pubs.acs.org/doi/abs/10.1021/acssynbio.1c00236
[56] Štach, M., Ptáčková, P., Mucha, M., Musil, J., Klener, P., & Otáhal, P. (2020). Inducible secretion of IL-21 augments anti-tumor activity of piggyBac-manufactured chimeric antigen receptor T cells. Cytotherapy, 22(12), 744–754. https://www.sciencedirect.com/science/article/pii/S1465324920308215
[57] Weber, E. W., Parker, K. R., Sotillo, E., Lynn, R. C., Anbunathan, H., Lattin, J., … Klysz, D. (2021). Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 372(6537), eaba1786. DOI:10.1126/science.aba1786
[58] Li, H.-S., Wong, N. M., Tague, E., Ngo, J. T., Khalil, A. S., & Wong, W. W. (2022). High-performance multiplex drug-gated CAR circuits. Cancer cell, 40(11), 1294–1305. https://www.cell.com/cancer-cell/fulltext/S1535-6108(22)00372-5
[59] Jan, M., Scarfò, I., Larson, R. C., Walker, A., Schmidts, A., Guirguis, A. A., … Castano, A. P. (2021). Reversible ON-and OFF-switch chimeric antigen receptors controlled by lenalidomide. Science translational medicine, 13(575), eabb6295. https://www.science.org/doi/abs/10.1126/scitranslmed.abb6295
[60] Wu, C.-Y., Roybal, K. T., Puchner, E. M., Onuffer, J., & Lim, W. A. (2015). Remote control of therapeutic T cells through a small molecule–gated chimeric receptor. Science, 350(6258), aab4077. https://www.science.org/doi/abs/10.1126/science.aab4077
[61] Labanieh, L., Majzner, R. G., Klysz, D., Sotillo, E., Fisher, C. J., Vilches-Moure, J. G., … Hui, J. H. (2022). Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 185(10), 1745–1763. https://www.cell.com/cell/fulltext/S0092-8674(22)00391-9
[62] Israni, D. V, Li, H.-S., Gagnon, K. A., Sander, J. D., Roybal, K. T., Keith Joung, J., … Khalil, A. S. (2021). Clinically-driven design of synthetic gene regulatory programs in human cells. BioRxiv, 1(1), 2002–2021. https://www.biorxiv.org/content/10.1101/2021.02.22.432371.abstract
[63] Yang, L., Yin, J., Wu, J., Qiao, L., Zhao, E. M., Cai, F., & Ye, H. (2021). Engineering genetic devices for in vivo control of therapeutic T cell activity triggered by the dietary molecule resveratrol. Proceedings of the national academy of sciences, 118(34), 1–12. https://www.pnas.org/doi/abs/10.1073/pnas.2106612118
[64] Chakravarti, D., Caraballo, L. D., Weinberg, B. H., & Wong, W. W. (2019). Inducible gene switches with memory in human T cells for cellular immunotherapy. ACS synthetic biology, 8(8), 1744–1754. https://pubs.acs.org/doi/abs/10.1021/acssynbio.8b00512
[65] Tan, P., He, L., Han, G., & Zhou, Y. (2017). Optogenetic immunomodulation: shedding light on antitumor immunity. Trends in biotechnology, 35(3), 215–226. https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(16)30151-2
[66] Allen, M. E., Zhou, W., Thangaraj, J., Kyriakakis, P., Wu, Y., Huang, Z., … Xu, X. (2019). An AND-gated drug and photoactivatable Cre-loxP system for spatiotemporal control in cell-based therapeutics. ACS synthetic biology, 8(10), 2359–2371. https://pubs.acs.org/doi/abs/10.1021/acssynbio.9b00175
[67] Huang, Z., Wu, Y., Allen, M. E., Pan, Y., Kyriakakis, P., Lu, S., … Wang, Y. (2020). Engineering light-controllable CAR T cells for cancer immunotherapy. Science advances, 6(8), eaay9209. https://www.science.org/doi/abs/10.1126/sciadv.aay9209
[68] Zhao, B., Wang, Y., Tan, X., Zheng, X., Wang, F., Ke, K., … Shi, Y. (2019). An optogenetic controllable T cell system for hepatocellular carcinoma immunotherapy. Theranostics, 9(7), 1837. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485282/
[69] Nguyen, N. T., Huang, K., Zeng, H., Jing, J., Wang, R., Fang, S., … You, M. J. (2021). Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nature nanotechnology, 16(12), 1424–1434. https://www.nature.com/articles/s41565-021-00982-5
[70] Pan, Y., Yoon, S., Sun, J., Huang, Z., Lee, C., Allen, M., … Shung, K. K. (2018). Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proceedings of the national academy of sciences, 115(5), 992–997. https://www.pnas.org/doi/abs/10.1073/pnas.1714900115
[71] Wu, Y., Liu, Y., Huang, Z., Wang, X., Jin, Z., Li, J., … Pan, Y. (2021). Control of the activity of CAR-T cells within tumours via focused ultrasound. Nature biomedical engineering, 5(11), 1336–1347. https://www.nature.com/articles/s41551-021-00779-w
[72] Miller, I. C., Zamat, A., Sun, L.-K., Phuengkham, H., Harris, A. M., Gamboa, L., … Kwong, G. A. (2021). Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nature biomedical engineering, 5(11), 1348–1359. https://www.nature.com/articles/s41551-021-00781-2
[73] Spiegel, J. Y., Patel, S., Muffly, L., Hossain, N. M., Oak, J., Baird, J. H., … Craig, J. (2021). CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nature medicine, 27(8), 1419–1431. https://www.nature.com/articles/s41591-021-01436-0
[74] Garrison, B. S., Deng, H., Yucel, G., Frankel, N. W., Guzman-Ayala, M., Gordley, R., … Loving, K. (2021). FLT3 OR CD33 NOT EMCN logic gated CAR-NK cell therapy (SENTI-202) for precise targeting of AML. Blood, 138, 2799. https://www.sciencedirect.com/science/article/pii/S000649712104739X
[75] Gardner, T. J., Lee, J. P., Bourne, C. M., Wijewarnasuriya, D., Kinarivala, N., Kurtz, K. G., … Mo, G. (2022). Engineering CAR-T cells to activate small-molecule drugs in situ. Nature chemical biology, 18(2), 216–225. https://www.nature.com/articles/s41589-021-00932-1
[76] Li, A. W., & Lim, W. A. (2020). Engineering cytokines and cytokine circuits. Science, 370(6520), 1034–1035. https://www.science.org/doi/abs/10.1126/science.abb5607
[77] Zhao, Y., Dong, Y., Yang, S., Tu, Y., Wang, C., Li, J., … Lian, Z. (2022). Bioorthogonal equipping CAR-T cells with hyaluronidase and checkpoint blocking antibody for enhanced solid tumor immunotherapy. ACS central science, 8(5), 603–614. https://pubs.acs.org/doi/abs/10.1021/acscentsci.2c00163
[78] Kim, S., Hupperetz, C., Lim, S., & Kim, C. H. (2021). Genome editing of immune cells using CRISPR/Cas9. BMB reports, 54(1), 59. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851445/
[79] Rurik, J. G., Tombácz, I., Yadegari, A., Méndez Fernández, P. O., Shewale, S. V, Li, L., … Tam, Y. K. (2022). CAR T cells produced in vivo to treat cardiac injury. Science, 375(6576), 91–96. https://www.science.org/doi/abs/10.1126/science.abm0594