Time-dependent accumulation of phenolic compounds in Linum album Kotschy cell culture exposed to methyl jasmonate

Authors

  • Mostafa Sagharyan Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
  • Elaheh Samari Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
  • Mohsen Sharifi Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.

Keywords:

Cell culture, Flavonoids, Lignans, Linum album, Phenolic compounds

Abstract

Linum album can produce many valuable phenolic compounds, especially lignans as the potent anticancer agents. In the present study, we attempted to determine inducing effect of methyl jasmonate (MeJA) (50 µM) as an abiotic elicitor on the production of phenolics such as phenolic acids, flavonoids, and lignans in cell culture of L. album over a period of time. The content of cinnamic acid, p-coumaric acid, and ferulic acid increased at 72 h in response to elicitation. However, the level of caffeic acid increased at 48 h of elicitation, which was 1.53 times higher than the untreated sample. According to the results, the content of flavonoids including catechin, quercetin, myricetin, and daidzein also significantly increased during the last hours of the treatment with 50 µM of MeJA in L. album cells. The maximum levels of quercetin and myricetin were observed at 48 h of elicitation, while catechin and daidzein contents peaked at 72 h, which were 2-fold and 2.42-fold over the control, respectively. Significant time-dependent changes also occurred in lariciresinol (LARI) and 6-methoxypodophyllotoxin (6MPTOX) contents under MeJA treatment, while there was no change in secoisolariciresinol (SECO) content in treated cells compared to the control. The level of 6MPTOX reached 4 times of the control sample after 72 h of elicitation. In conclusion, the induction of phenolics contents in response to MeJA in a time-dependent manner can suggest that treatment time adjustment is essential to increase and obtain specific phenolic compounds in cell culture of L. album at shake-flask scale.

References

‎[1] ‎ Yahya, N. A., Attan, N., & Wahab, R. A. (2018). An overview of cosmeceutically relevant plant extracts ‎and strategies for extraction of plant-based bioactive compounds. Food and bioproducts processing, 112, ‎‎69–85. DOI: 10.1016/j.fbp.2018.09.002‎

‎[2] ‎ Nguyen, T. L., Ora, A., Häkkinen, S. T., Ritala, A., Räisänen, R., Kallioinen-Mänttäri, M., & Melin, K. ‎‎(2023). Innovative extraction technologies of bioactive compounds from plant by-products for textile ‎colorants and antimicrobial agents. Biomass conversion and biorefinery, 14(20), 24973–25002. DOI: ‎‎10.1007/s13399-023-04726-4‎

‎[3] ‎ Vogt, T. (2010). Phenylpropanoid biosynthesis. Molecular plant, 3(1), 2–20. DOI: 10.1093/mp/ssp106‎

‎[4] ‎ Ghasemzadeh, A., & Ghasemzadeh, N. (2011). Flavonoids and phenolic acids: role and biochemical ‎activity in plants and human. Journal of medicinal plant research, 5(31), 6697–6703. DOI: ‎‎10.5897/JMPR11.1404‎

‎[5] ‎ Khalid, M., Saeed-ur-Rahman, Bilal, M., & HUANG, D. feng. (2019). Role of flavonoids in plant ‎interactions with the environment and against human pathogens - a review. Journal of integrative ‎agriculture, 18(1), 211–230. DOI: 10.1016/S2095-3119(19)62555-4‎

‎[6] ‎ Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other ‎phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. ‎Medicines, 5(3), 93. DOI: 10.3390/medicines5030093‎

‎[7] ‎ Mutha, R. E., Tatiya, A. U., & Surana, S. J. (2021). Flavonoids as natural phenolic compounds and their ‎role in therapeutics: an overview. Future journal of pharmaceutical sciences, 7(1), 25. DOI: 10.1186/s43094-‎‎020-00161-8‎

‎[8] ‎ Ahmad, A., Kaleem, M., Ahmed, Z., & Shafiq, H. (2015). Therapeutic potential of flavonoids and their ‎mechanism of action against microbial and viral infections - a review. Food research international, 77, ‎‎221–235. DOI: 10.1016/j.foodres.2015.06.021‎

‎[9] ‎ Nemitz, M. C., Argenta, D. F., Koester, L. S., Bassani, V. L., von Poser, G. L., & Teixeira, H. F. (2016). ‎The international scenario of patents concerning isoflavones. Trends in food science and technology, 49, ‎‎85–95. DOI: 10.1016/j.tifs.2016.01.008‎

‎[10] ‎ Costa, P., Gonçalves, S., Valentão, P., Andrade, P. B., Coelho, N., & Romano, A. (2012). Thymus ‎lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with ‎antioxidant activity. Food chemistry, 135(3), 1253–1260. DOI: 10.1016/j.foodchem.2012.05.072‎

‎[11] ‎ Cheynier, V. (2012). Phenolic compounds: from plants to foods. Phytochemistry reviews, 11(2–3), 153–‎‎177. DOI: 10.1007/s11101-012-9242-8‎

‎[12] ‎ Suzuki, S., & Umezawa, T. (2007). Biosynthesis of lignans and norlignans. Journal of wood science, 53(4), ‎‎273–284. DOI: 10.1007/s10086-007-0892-x

‎[13] ‎ Fuss, E. (2003). Lignans in plant cell and organ cultures: an overview. Phytochemistry reviews, 2(3), 307–‎‎320. DOI: 10.1023/B:PHYT.0000045500.56476.f5‎

‎[14] ‎ Javadian, N., Karimzadeh, G., Sharifi, M., Moieni, A., & Behmanesh, M. (2017). In vitro polyploidy ‎induction: changes in morphology, podophyllotoxin biosynthesis, and expression of the related genes ‎in Linum album (linaceae). Planta, 245(6), 1165–1178. DOI: 10.1007/s00425-017-2671-2‎

‎[15] ‎ Samari, E., Sharifi, M., Ghanati, F., Fuss, E., & Ahmadian Chashmi, N. (2020). Chitosan-induced ‎phenolics production is mediated by nitrogenous regulatory molecules: NO and PAs in linum album ‎hairy roots. Plant cell, tissue and organ culture, 140(3), 563–576. DOI: 10.1007/s11240-019-01753-w

‎[16] ‎ Wawrosch, C., & Zotchev, S. B. (2021). Production of bioactive plant secondary metabolites through in ‎vitro technologies-status and outlook. Applied microbiology and biotechnology, 105(18), 6649–6668. DOI: ‎‎10.1007/s00253-021-11539-w

‎[17] ‎ Tashackori, H., Sharifi, M., Ahmadian Chashmi, N., Behmanesh, M., Safaie, N., & Sagharyan, M. (2021). ‎Physiological, biochemical, and molecular responses of Linum album to digested cell wall of ‎Piriformospora indica. Physiology and molecular biology of plants, 27(12), 2695–2708. DOI: 10.1007/s12298-‎‎021-01106-y

‎[18] ‎ Samari, E., Ahmadian Chashmi, N., Ghanati, F., Sajedi, R. H., Gust, A. A., Haghdoust, F., … Fuss, E. ‎‎(2022). Interactions between second messengers, SA and MAPK6 signaling pathways lead to chitosan-‎induced lignan production in Linum album cell culture. Industrial crops and products, 177, 114525. DOI: ‎‎10.1016/j.indcrop.2022.114525‎

‎[19] ‎ Soltani, M., Samari, E., Vazirifar, S., Ahmadian Chashmi, N., Sharifi, M., & Fotovat, R. (2023). ‎Putrescine induces lignans biosynthesis through changing the oxidative status and reprogramming ‎amino acids and carbohydrates levels in Linum album hairy roots. Plant cell, tissue and organ culture, ‎‎153(2), 387–402. DOI: 10.1007/s11240-023-02479-6‎

‎[20] ‎ Wu, X. H., Fan, M. Z., Li, X. F., Piao, X. C., Gao, R., & Lian, M. L. (2021). Involvement of putrescine, ‎nitric oxide, and hydrogen peroxide in methyl jasmonate-induced ginsenoside synthesis in ‎adventitious root cultures of panax ginseng C.A. Meyer. Journal of plant growth regulation, 40(4), 1440–‎‎1449. DOI: 10.1007/s00344-020-10199-w

‎[21] ‎ Sagharyan, M., Sharifi, M., & Samari, E. (2023). Methyl jasmonate redirects the dynamics of ‎carbohydrates and amino acids toward the lignans accumulation in Linum album cells. Plant physiology ‎and biochemistry, 198, 107677. DOI: 10.1016/j.plaphy.2023.107677‎

‎[22] ‎ Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco ‎tissue cultures. Physiologia plantarum, 15(3), 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x‎

‎[23] ‎ Owen, R. W., Haubner, R., Mier, W., Giacosa, A., Hull, W. E., Spiegelhalder, B., & Bartsch, H. (2003). ‎Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid ‎compounds in brined olive drupes. Food and chemical toxicology, 41(5), 703–717. DOI: 10.1016/S0278-‎‎6915(03)00011-5‎

‎[24] ‎ Zafari, S., Sharifi, M., Ahmadian Chashmi, N., & Mur, L. A. J. (2016). Modulation of Pb-induced stress ‎in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds ‎and amino acids. Plant physiology and biochemistry, 99, 11–20. DOI: 10.1016/j.plaphy.2015.12.004‎

‎[25] ‎ Keinänen, M., Oldham, N. J., & Baldwin, I. T. (2001). Rapid HPLC screening of jasmonate-induced ‎increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata. Journal of ‎agricultural and food chemistry, 49(8), 3553–3558. DOI: 10.1021/jf010200+‎

‎[26] ‎ Chashmi, N. A., Sharifi, M., Yousefzadi, M., Behmanesh, M., Rezadoost, H., Cardillo, A., & Palazon, J. ‎‎(2013). Analysis of 6-methoxy podophyllotoxin and podophyllotoxin in hairy root cultures of Linum ‎album Kotschy ex Boiss. Medicinal chemistry research, 22(2), 745–752. DOI: 10.1007/s00044-012-0067-1‎

‎[27] ‎ Yousefzadi, M., Sharifi, M., Chashmi, N. A., Behmanesh, M., & Ghasempour, A. (2010). Optimization of ‎podophyllotoxin extraction method from Linum album cell cultures. Pharmaceutical biology, 48(12), ‎‎1421–1425. DOI: 10.3109/13880209.2010.489564‎

‎[28] ‎ Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher ‎plants by in vitro tissue, organ and cell cultures. Journal of medicinal plants research, 3(13), 1222–1239.‎

‎[29] ‎ Gonçalves, S., & Romano, A. (2013). In vitro culture of lavenders (Lavandula spp.) and the production ‎of secondary metabolites. Biotechnology advances, 31(2), 166–174. DOI: 10.1016/j.biotechadv.2012.09.006‎

‎[30] ‎ Esmaeili, S., Sharifi, M., Ghanati, F., Soltani, B. M., Samari, E., & Sagharyan, M. (2023). Exogenous ‎melatonin induces phenolic compounds production in Linum album cells by altering nitric oxide and ‎salicylic acid. Scientific reports, 13(1), 4158. DOI: 10.1038/s41598-023-30954-9‎

‎[31] ‎ Esmaeilzadeh Bahabadi, S., Sharifi, M., Behmanesh, M., Safaie, N., Murata, J., Araki, R., … Satake, H. ‎‎(2012). Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant ‎genes in cell cultures of Linum album. Journal of plant physiology, 169(5), 487–491. DOI: ‎‎10.1016/j.jplph.2011.12.006‎

‎[32] ‎ Tahsili, J., Sharifi, M., Safaie, N., Esmaeilzadeh-Bahabadi, S., & Behmanesh, M. (2014). Induction of ‎lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium ‎graminearum. Journal of plant interactions, 9(1), 412–417. DOI: 10.1080/17429145.2013.846419‎

‎[33] ‎ Tashackori, H., Sharifi, M., Chashmi, N. A., Behmanesh, M., & Safaie, N. (2018). Piriformospora indica ‎cell wall modulates gene expression and metabolite profile in Linum album hairy roots. Planta, 248(5), ‎‎1289–1306. DOI: 10.1007/s00425-018-2973-z

‎[34] ‎ Takó, M., Kerekes, E. B., Zambrano, C., Kotogán, A., Papp, T., Krisch, J., & Vágvölgyi, C. (2020). Plant ‎phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating ‎microorganisms. Antioxidants, 9(2). DOI: 10.3390/antiox9020165‎

‎[35] ‎ Swanson, B. G. (2003). Tannins and Polyphenols. In Encyclopedia of food sciences and nutrition. DOI: ‎‎10.1016/b0-12-227055-x/01178-0‎

‎[36] ‎ de la Rosa, L. A., Moreno-Escamilla, J. O., Rodrigo-García, J., & Alvarez-Parrilla, E. (2018). Phenolic ‎compounds. In Yahia, E. M. B. T. P. P. and B. of F. and V. (Ed.), Postharvest physiology and biochemistry of ‎fruits and vegetables. Woodhead Publishing. DOI: 10.1016/B978-0-12-813278-4.00012-9‎

‎[37] ‎ Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: chemical characteristics and ‎biological activity. Molecules, 26(17). DOI: 10.3390/molecules26175377‎

‎[38] ‎ Samanta Amalesh, Das Gouranga, D. S. K. (2011). Roles of flavonoids in plants. International Journal of ‎Pharmaceutical Science and Technology, 6(1), 12–35. ‎https://www.researchgate.net/publication/279499208%0D

‎[39] ‎ Saini, N., Gahlawat, S. K., & Lather, V. (2017). Flavonoids: A nutraceutical and its role as anti-‎inflammatory and anticancer agent. In Gahlawat, S. K. … Kaur, P. (Eds.), Plant biotechnology: recent ‎advancements and developments. Singapore: springer singapore. DOI: 10.1007/978-981-10-4732-9_13‎

‎[40] ‎ Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., & Salopek-Sondi, B. (2021). The role of polyphenols in ‎abiotic stress response: The influence of molecular structure. Plants. DOI: 10.3390/plants10010118‎

‎[41] ‎ Canel, C., Moraes, R. M., Dayan, F. E., & Ferreira, D. (2000). Molecules of interest: podophyllotoxin. ‎Phytochemistry, 54(2), 115–120. DOI: 10.1016/S0031-9422(00)00094-7‎

‎[42] ‎ Mukhija, M., Joshi, B. C., Bairy, P. S., Bhargava, A., & Sah, A. N. (2022). Lignans: a versatile source of ‎anticancer drugs. Beni-suef university journal of basic and applied sciences, 11(1), 76. DOI: 10.1186/s43088-‎‎022-00256-6‎

Published

2024-11-05

How to Cite

Time-dependent accumulation of phenolic compounds in Linum album Kotschy cell culture exposed to methyl jasmonate. (2024). Biocompounds, 1(1), 54-62. https://bic.reapress.com/journal/article/view/17

Similar Articles

You may also start an advanced similarity search for this article.