Preparation and Swelling Behaviour of Calcium-Alginate and Calcium Alginate-Chitosan Hydrogel Beads

Authors

  • Samira Askarkiaee Department of Chemical Engineering, Mazandaran University of Science and Technology, Babol, Iran.
  • Mazyar Sharifzadeh Baei * Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran. https://orcid.org/0000-0002-6181-6076

https://doi.org/10.48313/bic.vi.30

Abstract

Hydrogels are three-dimensional crosslinked polymeric structures that are able to swell in an aqueous environment. Use of the natural polymer, Sodium Alginate (SA), as the scaffold material in hydrogels has been highly pursued thanks to the polymer's biocompatibility. SA, which is a naturally occurring non-toxic polysaccharide found in marine brown algae, is one of the polysaccharides employed to fabricate small hydrogel beads. The reinforcement of alginate beads has been done by incorporating polymers, such as chitosan. These beads can be prepared using an ionotropic gelation method. In this research, the swelling ability of the calcium alginate and chitosan-treated calcium alginate beads in solutions with different pH values was investigated. They exhibited significant swelling rates when exposed to the slightly alkaline environment. Thus, these beads are a good candidate to be studied as a polymeric carrier for drug delivery in the intestinal tract.   

Keywords:

Hydrogel, Sodium alginate, Chitosan, Swelling behavior, Ionotropic gelation

References

  1. [1] Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced materials, 18(11), 1345–1360. https://doi.org/10.1002/adma.200501612

  2. [2] Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European polymer journal, 65, 252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

  3. [3] Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews, 60(15), 1638–1649. https://doi.org/10.1016/j.addr.2008.08.002

  4. [4] Ganji, F., Vasheghani, F. S., Vasheghani, F. E., & others. (2010). Theoretical description of hydrogel swelling: A review. Iranian polymer journal, 19(5), 375–398. https://www.researchgate.net/publication/260706034

  5. [5] Dai, Y. N., Li, P., Zhang, J. P., Wang, A. Q., & Wei, Q. (2008). A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharmaceutics & drug disposition, 29(3), 173–184. https://doi.org/10.1002/bdd.590

  6. [6] Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., … ., & Khademhosseini, A. (2014). 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced materials, 26(1), 85–124. https://doi.org/10.1002/adma.201303233

  7. [7] Mahdavinia, G. R., Mousavi, S. B., Karimi, F., Marandi, G. B., Garabaghi, H., & Shahabvand, S. (2009). Synthesis of porous poly (acrylamide) hydrogels using calcium carbonate and its application for slow release of potassium nitrate. Express polymer letters, 3(5), 279–285. https://doi.org/10.3144/expresspolymlett.2009.35

  8. [8] Kabiri, K., Omidian, H., Hashemi, S. A., & Zohuriaan-Mehr, M. J. (2003). Synthesis of fast-swelling superabsorbent hydrogels: Effect of crosslinker type and concentration on porosity and absorption rate. European polymer journal, 39(7), 1341–1348. https://doi.org/10.1016/S0014-3057(02)00391-9

  9. [9] Abreu, F. O. M. S., Bianchini, C., Forte, M. M. C., & Kist, T. B. L. (2008). Influence of the composition and preparation method on the morphology and swelling behavior of alginate–chitosan hydrogels. Carbohydrate polymers, 74(2), 283–289. https://doi.org/10.1016/j.carbpol.2008.02.017

  10. [10] Meng, X., Li, P., Wei, Q., & Zhang, H. X. (2011). pH sensitive alginate-chitosan hydrogel beads for carvedilol delivery. Pharmaceutical development and technology, 16(1), 22–28. https://doi.org/10.3109/10837450903479947

  11. [11] Antoniou, J., Liu, F., Majeed, H., Qi, J., Yokoyama, W., & Zhong, F. (2015). Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles. Colloids and surfaces a: physicochemical and engineering aspects, 465, 137–146. https://doi.org/10.1016/j.colsurfa.2014.10.040

  12. [12] Mahmoud, M. E., Abou Kana, M. T. H., & Hendy, A. A. (2015). Synthesis and implementation of nano-chitosan and its acetophenone derivative for enhanced removal of metals. International journal of biological macromolecules, 81, 672–680. https://doi.org/10.1016/j.ijbiomac.2015.08.063

  13. [13] Sharma, S., Khuller, G. K., & Garg, S. K. (2003). Alginate-based oral drug delivery system for tuberculosis: Pharmacokinetics and therapeutic effects. Journal of antimicrobial chemotherapy, 51(4), 931–938. https://doi.org/10.1093/jac/dkg165

  14. [14] Mandal, S., Kumar, S. S., Krishnamoorthy, B., & Basu, S. K. (2010). Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods. Brazilian journal of pharmaceutical sciences, 46, 785–793. https://doi.org/10.1590/S1984-82502010000400021

  15. [15] Hong, F., Qiu, P., Wang, Y., Ren, P., Liu, J., Zhao, J., & Gou, D. (2024). Chitosan-based hydrogels: From preparation to applications, a review. Food chemistry: x, 21, 101095. https://doi.org/10.1016/j.fochx.2023.101095

  16. [16] Abasalizadeh, F., Moghaddam, S. V., Alizadeh, E., Akbari, E., Kashani, E., Fazljou, S. M. B., … ., & Akbarzadeh, A. (2020). Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of biological engineering, 14(1), 8. https://doi.org/10.1186/s13036-020-0227-7

  17. [17] Khatibi, N., Naimi-Jamal, M. R., Balalaie, S., & Shokoohmand, A. (2024). Development and evaluation of a pH-sensitive, naturally crosslinked alginate-chitosan hydrogel for drug delivery applications. Frontiers in biomaterials science, 3, 1457540. https://doi.org/10.3389/fbiom.2024.1457540

  18. [18] Rodríguez-Rodríguez, R., Carreón-Álvarez, C., Cruz-Medina, C. A., Knauth, P., López, Z., Fletes-Vargas, G., & Sahagún, M. R. (2025). A review of pH-responsive chitosan-based hydrogels for drug delivery applications. European polymer journal, 237, 114173. https://doi.org/10.1016/j.eurpolymj.2025.114173

  19. [19] Ma, Y., Tang, Y., Fan, J., Sun, T., Qiu, X., Wei, L., & Zhang, X. (2024). A pH-responsive dual-network biopolysaccharide hydrogel with enhanced self-healing and controlled drug release properties. Royal society of chemistry advances, 14(52), 38353–38363. https://doi.org/10.1039/D4RA05775A

  20. [20] Ren, Y., Wang, Q., Xu, W., Yang, M., Guo, W., He, S., & Liu, W. (2024). Alginate-based hydrogels mediated biomedical applications: A review. International journal of biological macromolecules, 279(Pt 1), 135019. https://doi.org/10.1016/j.ijbiomac.2024.135019

  21. [21] Li, P., Dai, Y. N., Zhang, J. P., Wang, A. Q., & Wei, Q. (2008). Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. International journal of biomedical science : IJBS, 4(3), 221–228. https://pmc.ncbi.nlm.nih.gov/articles/PMC3614711/

  22. [22] Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 33(11), 3279–3305. https://doi.org/10.1016/j.biomaterials.2012.01.007

  23. [23] Varaprasad, K. (2020). Alginate-based composite materials for wound dressing application: A mini. Carbohydrate polymers, 236, 116025. https://doi.org/10.1016/j.carbpol.2020.116025

  24. [24] Liu, X., Xue, W., Liu, Q., Yu, W., Fu, Y., Xiong, X., … ., & Yuan, Q. (2004). Swelling behaviour of alginate–chitosan microcapsules prepared by external gelation or internal gelation technology. Carbohydrate polymers, 56(4), 459–464. https://doi.org/10.1016/j.carbpol.2004.03.011

  25. [25] Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in polymer science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

  26. [26] Llorens-Gámez, M., Salesa, B., & Serrano-Aroca, Á. (2020). Physical and biological properties of alginate/carbon nanofibers hydrogel films. International journal of biological macromolecules, 151, 499–507. https://doi.org/10.1016/j.ijbiomac.2020.02.213

  27. [27] Rassu, G., Salis, A., Porcu, E. P., Giunchedi, P., Roldo, M., & Gavini, E. (2016). Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases. Carbohydrate polymers, 136, 1338–1347. https://doi.org/10.1016/j.carbpol.2015.10.048

  28. [28] Chen, K., Zong, T., Chen, Q., Liu, S., Xu, L., & Zhang, D. (2022). Preparation and characterization of polyvinyl alcohol/ sodium alginate/carboxymethyl cellulose composite hydrogels with oriented structure. Soft materials, 20(1), 99–108. https://doi.org/10.1080/1539445X.2021.1926281

Published

2025-01-17

How to Cite

Askarkiaee, S. ., & Sharifzadeh Baei, M. . (2025). Preparation and Swelling Behaviour of Calcium-Alginate and Calcium Alginate-Chitosan Hydrogel Beads. Biocompounds, 2(1), 10-16. https://doi.org/10.48313/bic.vi.30