Design and Chemical Engineering of Polymeric Biomaterials: Functionalization, Crosslinking, and Characterization Strategies for Advanced 3D Bioprinting
Abstract
Three-Dimensional (3D) bioprinting of polymeric biomaterials has emerged as a transformative platform in tissue engineering, enabling the fabrication of patient-specific scaffolds with precise spatial control. The performance of these constructs is fundamentally governed by the chemical architecture of the constituent polymers and the mechanisms of crosslinking that dictate their rheological behavior, mechanical integrity, and degradation kinetics, which collectively determine print fidelity and biological functionality. This review synthesizes current advances in natural and chemically modified synthetic polymers, elucidates the physicochemical principles underlying physical, ionic, and covalent crosslinking modalities, and highlights the intricate structure-property relationships that shape the behavior of printable bioinks. Moreover, contemporary characterization methodologies, recent material innovations, persistent challenges, and emerging directions aimed at enhancing biocompatibility and functional maturation are critically examined. Collectively, this work provides a rigorous framework to guide the rational design, optimization, and translational development of polymer-based biomaterials for next-generation regenerative medicine.
Keywords:
Three-dimensional bioprinting, Polymeric biomaterials, Bioinks, Hydrogels, Tissue engineeringReferences
- [1] Gentile, P., Chiono, V., Carmagnola, I., & Hatton, P. V. (2014). An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International journal of molecular sciences, 15(3), 3640–3659. https://doi.org/10.3390/ijms15033640
- [2] Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M., & D’Lima, D. D. (2012). Direct human cartilage repair using three-dimensional bioprinting technology. Tissue engineering part a, 18(11–12), 1304–1312. https://doi.org/10.1089/ten.tea.2011.0543
- [3] Yue, K., Trujillo-de Santiago, G., Alvarez, M. M., Tamayol, A., Annabi, N., & Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73, 254–271. https://doi.org/10.1016/j.biomaterials.2015.08.045
- [4] Chimene, D., Kaunas, R., & Gaharwar, A. K. (2020). Hydrogel bioink reinforcement for additive manufacturing: A focused review of emerging strategies. Advanced materials, 32(1), 1902026. https://doi.org/10.1002/adma.201902026
- [5] Ouyang, L., Armstrong, J. P. K., Lin, Y., Wojciechowski, J. P., Lee-Reeves, C., Hachim, D., … ., & Stevens, M. M. (2020). Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Science advances, 6(38), eabc5529. https://doi.org/10.1126/sciadv.abc5529
- [6] Lin, C. C., Raza, A., & Shih, H. (2011). PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials, 32(36), 9685–9695. https://doi.org/10.1016/j.biomaterials.2011.08.083
- [7] Petta, D., Armiento, A. R., Grijpma, D., Alini, M., Eglin, D., & D’este, M. (2018). 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking. Biofabrication, 10(4), 44104. https://doi.org/10.1088/1758-5090/aadf58
- [8] Wang, L. L., Highley, C. B., Yeh, Y. C., Galarraga, J. H., Uman, S., & Burdick, J. A. (2018). Three-dimensional extrusion bioprinting of single-and double-network hydrogels containing dynamic covalent crosslinks. Journal of biomedical materials research part a, 106(4), 865–875. https://doi.org/10.1002/jbm.a.36323
- [9] Faramarzi, N., Yazdi, I. K., Nabavinia, M., Gemma, A., Fanelli, A., Caizzone, A., ... ., & Tamayol, A. (2018). Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Advanced healthcare materials, 7(11), 1701347. https://doi.org/10.1002/adhm.201701347
- [10] Ghosh, K., Shu, X. Z., Mou, R., Lombardi, J., Prestwich, G. D., Rafailovich, M. H., & Clark, R. A. F. (2005). Rheological characterization of in situ cross-linkable hyaluronan hydrogels. Biomacromolecules, 6(5), 2857–2865. https://doi.org/10.1021/bm050361c
- [11] Soltan, N., Ning, L., Mohabatpour, F., Papagerakis, P., & Chen, X. (2019). Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds. ACS biomaterials science & engineering, 5(6), 2976–2987. https://doi.org/10.1021/acsbiomaterials.9b00167
- [12] Heo, D. N., Alioglu, M. A., Wu, Y., Ozbolat, V., Ayan, B., Dey, M., … ., & Ozbolat, I. T. (2020). 3D Bioprinting of carbohydrazide-modified gelatin into microparticle-suspended oxidized alginate for the fabrication of complex-shaped tissue constructs. ACS applied materials & interfaces, 12(18), 20295–20306. https://doi.org/10.1021/acsami.0c05096
- [13] Tabriz, A. G., Hermida, M. A., Leslie, N. R., & Shu, W. (2015). Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication, 7(4), 45012. https://doi.org/10.1088/1758-5090/7/4/045012
- [14] Chen, Q., Tian, X., Fan, J., Tong, H., Ao, Q., & Wang, X. (2020). An Interpenetrating alginate/gelatin network for three-dimensional (3D) cell cultures and organ bioprinting. Molecules, 25(3), 1–20. https://doi.org/10.3390/molecules25030756
- [15] Ning, L., Mehta, R., Cao, C., Theus, A., Tomov, M., Zhu, N., … ., & Serpooshan, V. (2020). Embedded 3D bioprinting of gelatin methacryloyl-based constructs with highly tunable structural fidelity. ACS applied materials & interfaces, 12(40), 44563–44577. https://doi.org/10.1021/acsami.0c15078
- [16] Lim, K. S., Schon, B. S., Mekhileri, N. V, Brown, G. C. J., Chia, C. M., Prabakar, S., … ., & Woodfield, T. B. F. (2016). New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS biomaterials science & engineering, 2(10), 1752–1762. https://doi.org/10.1021/acsbiomaterials.6b00149
- [17] Poldervaart, M. T., Goversen, B., De Ruijter, M., Abbadessa, A., Melchels, F. P. W., Öner, F. C., … ., & Alblas, J. (2017). 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PloS one, 12(6), e0177628. https://doi.org/10.1371/journal.pone.0177628
- [18] Kim, H. S., Kim, C., & Lee, K. Y. (2022). Three-dimensional bioprinting of polysaccharide-based self-healing hydrogels with dual cross-linking. Journal of biomedical materials research part a, 110(4), 761–772. https://doi.org/10.1002/jbm.a.37325
- [19] Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377
- [20] Stichler, S., Böck, T., Paxton, N., Bertlein, S., Levato, R., Schill, V., ... ., & Groll, J. (2017). Double printing of hyaluronic acid/poly (glycidol) hybrid hydrogels with poly (ε-caprolactone) for MSC chondrogenesis. Biofabrication, 9(4), 44108. https://doi.org/10.1088/1758-5090/aa8cb7
- [21] Wu, D., Wang, W., Diaz-Dussan, D., Peng, Y. Y., Chen, Y., Narain, R., & Hall, D. G. (2019). In situ forming, dual-crosslink network, self-healing hydrogel enabled by a bioorthogonal nopoldiol–benzoxaborolate click reaction with a wide pH range. Chemistry of materials, 31(11), 4092–4102. https://doi.org/10.1021/acs.chemmater.9b00769
- [22] Lee, M., Bae, K., Guillon, P., Chang, J., Arlov, Ø., & Zenobi-Wong, M. (2018). Exploitation of cationic silica nanoparticles for bioprinting of large-scale constructs with high printing fidelity. ACS applied materials & interfaces, 10(44), 37820–37828. https://doi.org/10.1021/acsami.8b13166
- [23] Lai, J., Chen, X., Lu, H. H., & Wang, M. (2024). 3D bioprinting of graphene oxide-incorporated hydrogels for neural tissue regeneration. 3D printing and additive manufacturing, 11(6), e2022–e2032. https://doi.org/10.1089/3dp.2023.0150
- [24] Olate-Moya, F., Rubí-Sans, G., Engel, E., Mateos-Timoneda, M. Á., & Palza, H. (2024). 3D bioprinting of biomimetic alginate/gelatin/chondroitin sulfate hydrogel nanocomposites for intrinsically chondrogenic differentiation of human mesenchymal stem cells. Biomacromolecules, 25(6), 3312–3324. https://doi.org/10.1021/acs.biomac.3c01444
- [25] Rizwana, N., Maslekar, N., Chatterjee, K., Yao, Y., Agarwal, V., & Nune, M. (2024). Dual crosslinked antioxidant mixture of Poly(vinyl alcohol) and cerium oxide nanoparticles as a bioink for 3D bioprinting. ACS applied nano materials, 7(16), 18177–18188. https://doi.org/10.1021/acsanm.3c02962
- [26] Ouyang, L., Highley, C. B., Sun, W., & Burdick, J. A. (2017). A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Advanced materials, 29(8), 1604983. https://doi.org/10.1002/adma.201604983
- [27] De Melo, B. A. G., Jodat, Y. A., Mehrotra, S., Calabrese, M. A., Kamperman, T., Mandal, B. B., … ., & Shin, S. R. (2019). 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties. Advanced functional materials, 29(51), 1906330. https://doi.org/10.1002/adfm.201906330
- [28] Darabi, M. A., Khosrozadeh, A., Wang, Y., Ashammakhi, N., Alem, H., Erdem, A., ... ., & Xing, M. (2020). An alkaline based method for generating crystalline, strong, and shape memory polyvinyl alcohol biomaterials. Advanced science, 7(21), 1902740. https://doi.org/10.1002/advs.201902740
- [29] Zhu, J., He, Y., Wang, Y., & Cai, L. H. (2024). Voxelated bioprinting of modular double-network bio-ink droplets. Nature communications, 15(1), 5902. https://doi.org/10.1038/s41467-024-49705-z
- [30] Huh, J., Moon, Y.-W., Park, J., Atala, A., Yoo, J. J., & Lee, S. J. (2021). Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication, 13(3), 34103. https://doi.org/10.1088/1758-5090/abfd7a
- [31] Greene, T., & Lin, C.-C. (2015). Modular cross-linking of gelatin-based thiol–norbornene hydrogels for in vitro 3d culture of hepatocellular carcinoma cells. ACS biomaterials science & engineering, 1(12), 1314–1323. https://doi.org/10.1021/acsbiomaterials.5b00436
- [32] Mihajlovic, M., Rikkers, M., Mihajlovic, M., Viola, M., Schuiringa, G., Ilochonwu, B. C., … ., & Vermonden, T. (2022). Viscoelastic chondroitin sulfate and hyaluronic acid double-network hydrogels with reversible cross-links. Biomacromolecules, 23(3), 1350–1365. https://doi.org/10.1021/acs.biomac.1c01583
- [33] Barreiro Carpio, M., Gonzalez Martinez, E., Dabaghi, M., Ungureanu, J., Arizpe Tafoya, A. V., Gonzalez Martinez, D. A., … ., & Moran-Mirabal, J. M. (2023). High-fidelity extrusion bioprinting of low-printability polymers using carbopol as a rheology modifier. ACS applied materials & interfaces, 15(47), 54234–54248. https://doi.org/10.1021/acsami.3c10092
- [34] Zhang, H., Cong, Y., Osi, A. R., Zhou, Y., Huang, F., Zaccaria, R. P., … ., & Fu, J. (2020). Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth. Advanced functional materials, 30(13), 1910573. https://doi.org/10.1002/adfm.201910573
- [35] Blaeser, A., Duarte Campos, D. F., Puster, U., Richtering, W., Stevens, M. M., & Fischer, H. (2016). Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Advanced healthcare materials, 5(3), 326–333. https://doi.org/10.1002/adhm.201500677
- [36] Noh, I., Kim, N., Tran, H. N., Lee, J., & Lee, C. (2019). 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomaterials research, 23(1), 1–9. https://doi.org/10.1186/s40824-018-0152-8
- [37] Mirani, B., Stefanek, E., Godau, B., Hossein Dabiri, S. M., & Akbari, M. (2021). Microfluidic 3D printing of a photo-cross-linkable bioink using insights from computational modeling. ACS biomaterials science & engineering, 7(7), 3269–3280. https://doi.org/10.1021/acsbiomaterials.1c00084
- [38] Kesti, M., Eberhardt, C., Pagliccia, G., Kenkel, D., Grande, D., Boss, A., & Zenobi-Wong, M. (2015). Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Advanced functional materials, 25(48), 7406–7417. https://doi.org/10.1002/adfm.201503423
- [39] Stratesteffen, H., Köpf, M., Kreimendahl, F., Blaeser, A., Jockenhoevel, S., & Fischer, H. (2017). GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication, 9(4), 45002. https://doi.org/10.1088/1758-5090/aa857c
- [40] Taniguchi Nagahara, M. H., Caiado Decarli, M., Inforcatti Neto, P., da Silva, J. V., & Moraes, A. M. (2022). Crosslinked alginate-xanthan gum blends as effective hydrogels for 3D bioprinting of biological tissues. Journal of applied polymer science, 139(28), e52612. https://doi.org/10.1002/app.52612
- [41] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of metformin hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics. International journal of nano dimension, 9(3), 298–313. https://dorl.net/dor/20.1001.1.20088868.2018.9.3.9.7
- [42] Mueller, E., Xu, F., & Hoare, T. (2022). FRESH bioprinting of dynamic hydrazone-cross-linked synthetic hydrogels. Biomacromolecules, 23(11), 4883–4895. https://doi.org/10.1021/acs.biomac.2c01046
- [43] Wu, J., Sang, L., Kang, R., Li, M., Cheng, C., Liu, A., … ., & Jian, A. (2025). A novel 3D bioprinting crosslinking method based on solenoid valve control. Macromolecular bioscience, 25(8), 2500039. https://doi.org/10.1002/mabi.202500039
- [44] Tapeh, S. M. T., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517