Bioceramics for Orthopedic and Dental Applications: Materials, Performance, and Challenges

Authors

  • Vahideh Lahooti Department of Dentistry, Gilan University of Medical Sciences, Rasht, Iran.
  • Ayda Nikzad * Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.

https://doi.org/10.48313/bic.vi.39

Abstract

Bioceramics play a pivotal role in the reconstruction of orthopedic and dental hard tissues due to their optimized mechanical performance, chemical stability, and tunable biointeractivity. These materials are traditionally categorized into three major classes: bioinert, bioactive, and bioresorbable, each exhibiting distinct functional characteristics derived from their crystallographic structure and surface properties. Their clinical utility spans from enabling long-term osseointegration to serving as temporary scaffolds that support tissue regeneration. Nevertheless, inherent limitations, including structural brittleness, elastic modulus mismatch with native bone, and challenges in achieving precise control over in vivo degradation kinetics, continue to constrain their performance. To overcome these limitations, recent technological advancements have focused on developing mechanically enhanced nanocomposites, implementing nanoscale surface engineering to improve cellular responses, designing stimuli-responsive “smart” ceramics, and leveraging additive manufacturing (3D printing) to fabricate patient-specific implants with optimized microarchitectures. Future research directions include creating multifunctional bioceramic systems, synchronizing degradation profiles with host tissue regeneration dynamics, and integrating advanced Drug Delivery Systems (DDS) within bioceramic matrices. The overarching goal is to engineer next-generation bioceramics that exhibit superior regenerative potential and highly predictable biological integration, ultimately improving their long-term clinical efficacy.

Keywords:

Bioceramics, Biomaterials, Surface engineering, Orthopedic implants, Dental implants

References

  1. [1] Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413–3431. https://doi.org/10.1016/j.biomaterials.2006.01.039

  2. [2] Buckley, R. W. (2007). Progress in solid state chemistry research. Nova Publishers. https://B2n.ir/db2130

  3. [3] U. S. Food & Drug, Administration. (2023). Nanotechnology task force. https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force

  4. [4] European Medicines Agency. (2024). Guideline on quality, non-clinical and clinical requirements for investigational advanced therapy medicinal products in clinical trials - scientific guideline. https://www.ema.europa.eu/en/guideline-quality-non-clinical-clinical-requirements-investigational-advanced-therapy-medicinal-products-clinical-trials-scientific-guideline

  5. [5] Albrektsson, T., & Johansson, C. (2001). Osteoinduction, osteoconduction and osseointegration. European spine journal, 10(2), S96–S101. https://doi.org/10.1007/s005860100282

  6. [6] Gholami, A., Mohkam, M., Soleimanian, S., Sadraeian, M., & Lauto, A. (2024). Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. Microsystems & nanoengineering, 10(1), 113. https://doi.org/10.1038/s41378-024-00743-z

  7. [7] Naskar, A., Kilari, S., Baranwal, G., Kane, J., & Misra, S. (2024). Nanoparticle-based drug delivery for vascular applications. Bioengineering, 11(12), 1222. https://doi.org/10.3390/bioengineering11121222

  8. [8] Rawding, P. A., Bu, J., Wang, J., Kim, D. W., Drelich, A. J., Kim, Y., & Hong, S. (2022). Dendrimers for cancer immunotherapy: Avidity-based drug delivery vehicles for effective anti-tumor immune response. Wiley interdisciplinary reviews: Nanomedicine and nanobiotechnology, 14(2), e1752. https://doi.org/10.1002/wnan.1752

  9. [9] Shan, X., Gong, X., Li, J., Wen, J., Li, Y., & Zhang, Z. (2022). Current approaches of nanomedicines in the market and various stage of clinical translation. Acta pharmaceutica sinica b, 12(7), 3028–3048. https://doi.org/10.1016/j.apsb.2022.02.025

  10. [10] Younis, M. A., Tawfeek, H. M., Abdellatif, A. A. H., Abdel-Aleem, J. A., & Harashima, H. (2022). Clinical translation of nanomedicines: Challenges, opportunities, and keys. Advanced drug delivery reviews, 181, 114083. https://doi.org/10.1016/j.addr.2021.114083

  11. [11] Wang, Y., Li, Z., Ouyang, J., & Karniadakis, G. E. (2020). Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. Soft matter, 16(20), 4756–4766. https://doi.org/10.1039/D0SM00207K

  12. [12] Alfutaimani, A. S., Alharbi, N. K., S. Alahmari, A., A. Alqabbani, A., & Aldayel, A. M. (2024). Exploring the landscape of lipid nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. International journal of pharmaceutics: x, 8, 100305. https://doi.org/10.1016/j.ijpx.2024.100305

  13. [13] Zhang, P., Xiao, Y., Sun, X., Lin, X., Koo, S., Yaremenko, A. V, … ., & Tao, W. (2023). Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. Med, 4(3), 147–167. https://doi.org/10.1016/j.medj.2022.12.001

  14. [14] Souto, E. B., Cano, A., Martins-Gomes, C., Coutinho, T. E., Zielińska, A., & Silva, A. M. (2022). Microemulsions and nanoemulsions in skin drug delivery. Bioengineering, 9(4), 158. https://doi.org/10.3390/bioengineering9040158

  15. [15] Tasnim, K. N., Rahman, A., Newaj, S. M., Mahmud, O., Monira, S., Khan, T. Z., … ., & Sharker, S. M. (2024). Trackable liposomes for in vivo delivery tracing toward personalized medicine care under NIR light on skin tumor. ACS applied bio materials, 7(5), 3190–3201. https://doi.org/10.1021/acsabm.4c00203

  16. [16] Ginebra, M. P., Traykova, T., & Planell, J. A. (2006). Calcium phosphate cements as bone drug delivery systems: A review. Journal of controlled release, 113(2), 102–110. https://doi.org/10.1016/j.jconrel.2006.04.007

  17. [17] Zhou, Q., Su, X., Wu, J., Zhang, X., Su, R., Ma, L., … ., & He, R. (2023). Additive manufacturing of bioceramic implants for restoration bone engineering: Technologies, advances, and future perspectives. ACS biomaterials science & engineering, 9(3), 1164–1189. https://doi.org/10.1021/acsbiomaterials.2c01164

  18. [18] Song, X., Segura-Egea, J. J., & Díaz-Cuenca, A. (2023). Sol–Gel technologies to obtain advanced bioceramics for dental therapeutics. Molecules, 28(19), 6967. https://doi.org/10.3390/molecules28196967

  19. [19] Vaiani, L., Boccaccio, A., Uva, A. E., Palumbo, G., Piccininni, A., Guglielmi, P., … ., & Ballini, A. (2023). Ceramic materials for biomedical applications: An overview on properties and fabrication processes. Journal of functional biomaterials, 14(3), 146. https://doi.org/10.3390/jfb14030146

  20. [20] Wang, X., Xiao, Y., Song, W., Ye, L., Yang, C., Xing, Y., & Yuan, Z. (2023). Clinical application of calcium silicate-based bioceramics in endodontics. Journal of translational medicine, 21(1), 853. https://doi.org/10.1186/s12967-023-04550-4

  21. [21] Safarzadeh, S., Mozafari, M. R., & Naghib, S. M. (2024). Chitosan-incorporated bioceramic-based nanomaterials for localized release of therapeutics and bone regeneration: An overview of recent advances and progresses. Current organic chemistry, 28(15), 1190–1214. https://doi.org/10.2174/0113852728304647240426201554

  22. [22] Naghib, S. M., Amiri, S., & Mozafari, M. R. (2024). Stimuli-responsive chitosan-based nanocarriers for drug delivery in wound dressing applications: A review. Carbohydrate polymer technologies and applications, 7, 100497. https://doi.org/10.1016/j.carpta.2024.100497

  23. [23] Joseph, A., & Uthirapathy, V. (2024). A systematic review of the contribution of additive manufacturing toward orthopedic applications. ACS omega, 9(44), 44042–44075. https://doi.org/10.1021/acsomega.4c04870

  24. [24] Lyons, J. G., Plantz, M. A., Hsu, W. K., Hsu, E. L., & Minardi, S. (2020). Nanostructured biomaterials for bone regeneration. Frontiers in bioengineering and biotechnology, 8, 922. https://doi.org/10.3389/fbioe.2020.00922

  25. [25] Zafar, M. J., Zhu, D., & Zhang, Z. (2019). 3D printing of bioceramics for bone tissue engineering. Materials, 12(20), 3361. 10.3390/ma12203361

  26. [26] Piconi, C., & Sprio, S. (2021). Oxide bioceramic composites in orthopedics and dentistry. Journal of composites science, 5(8), 206. https://doi.org/10.3390/jcs5080206

  27. [27] Motallebi Tala Tapeh, S., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: Physicomechanical and biological assessment. Materials science and engineering: C, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517

  28. [28] Ferreira, M. A. M., & Filipe, J. A. (2022). Ethical considerations on nanotechnology. https://doi.org/10.48550/arXiv.2202.01063

  29. [29] Belluomo, R., Khodaei, A., & Amin Yavari, S. (2023). Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta biomaterialia, 156, 234–249. https://doi.org/10.1016/j.actbio.2022.08.042

  30. [30] Chou, W. C., Canchola, A., Zhang, F., & Lin, Z. (2025). Machine learning and artificial intelligence in nanomedicine. Wiley interdisciplinary reviews: Nanomedicine and nanobiotechnology, 17(4), e70027. https://doi.org/10.1002/wnan.70027

  31. [31] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of metformin hydrochloride nanoliposomes: Evaluation of physicochemical characteristics and release kinetics. International journal of nano dimension, 9(3), 298-313. (In Persian). https://journals.iau.ir/article_659887_c9737398d6ce3f78d13a1fa5900b2c17.pdf

Published

2025-06-23

How to Cite

Lahooti, V. ., & Nikzad, A. (2025). Bioceramics for Orthopedic and Dental Applications: Materials, Performance, and Challenges. Biocompounds, 2(2), 116-127. https://doi.org/10.48313/bic.vi.39