Development and in Vitro Characterization of Niosomal Carriers Niosomal Carriers for Sustained Drug Delivery
Abstract
Drug delivery systems are designed to enhance bioavailability while overcoming the limitations of conventional dosing strategies. Vesicular carriers, such as niosomes, have attracted attention for their excellent stability, cost-effectiveness, and sustained-release properties. Niosomes can encapsulate both lipophilic and hydrophilic drugs, making them versatile carriers for a wide range of therapeutics. Recent studies have focused on optimizing niosomes for targeted drug delivery, exemplified by the encapsulation of 4-Hydroxyisoleucine (4-HIL) for diabetes management. In this study, 4-HIL isolated from fenugreek seeds was incorporated into niosomes and PEGylated niosomes using the thin-film hydration method. The resulting 4-HIL-loaded niosomes exhibited semi-spherical, smooth morphologies with a particle size of ~200 nm, a Zeta Potential (ZP) of -22 mV, and entrapment efficiencies ranging from 55.1% to 87.1%. Fourier-Transform Infrared (FTIR) spectroscopy confirmed hydrogen bonding between Span 60 and cholesterol within the niosomal structure. PEGylation increased vesicle sizes to 460–580 nm and improved entrapment efficiencies to 75.43–90.1%, highlighting the potential of this formulation as a promising carrier for antidiabetic therapy.
Keywords:
Niosomes, 4-Hydroxyisoleucine, Drug delivery, Polyethylene glycol, EncapsulationReferences
- [1] Sharma, R., Borah, S. J., Kumar, S., Gupta, A., Kumari, V., Kumar, R., … & Kumar, V. (2023). Emerging trends in nano-based antidiabetic therapeutics: a path to effective diabetes management. Materials advances, 4(15), 3091–3113. https://doi.org/10.1039/D3MA00159H
- [2] Rai, V. K., Mishra, N., Agrawal, A. K., Jain, S., & Yadav, N. P. (2016). Novel drug delivery system: an immense hope for diabetics. Drug delivery, 23(7), 2371–2390. https://doi.org/10.3109/10717544.2014.991001
- [3] Domingo-Lopez, D. A., Lattanzi, G., H. J. Schreiber, L., Wallace, E. J., Wylie, R., O’Sullivan, J., … & Duffy, G. P. (2022). Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Advanced drug delivery reviews, 185, 114280. https://doi.org/10.1016/j.addr.2022.114280
- [4] Nel, J., Elkhoury, K., Velot, É., Bianchi, A., Acherar, S., Francius, G., … & Arab-Tehrany, E. (2023). Functionalized liposomes for targeted breast cancer drug delivery. Bioactive materials, 24, 401–437. https://doi.org/10.1016/j.bioactmat.2022.12.027
- [5] Izhar, M. P., Hafeez, A., Kushwaha, P., & Simrah. (2023). Drug delivery through Niosomes: a comprehensive review with therapeutic applications. Journal of cluster science, 34(5), 2257–2273. https://doi.org/10.1007/s10876-023-02423-w
- [6] Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., Wu, M., … & Gao, H. (2023). Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese chemical letters, 34(2), 107518. https://doi.org/10.1016/j.cclet.2022.05.032
- [7] Souto, E. B., Cano, A., Martins-Gomes, C., Coutinho, T. E., Zielińska, A., & Silva, A. M. (2022). Microemulsions and nanoemulsions in skin drug delivery. Bioengineering, 9(4), 158. https://doi.org/10.3390/bioengineering9040158
- [8] Martinez-Borrajo, R., Diaz-Rodriguez, P., & Landin, M. (2023). Rationalized design to explore the full potential of PLGA microspheres as drug delivery systems. Drug delivery, 30(1), 2219864. https://doi.org/10.1080/10717544.2023.2219864
- [9] Huang, W. C., Lin, C. C., Chiu, T. W., & Chen, S. Y. (2022). 3D gradient and linearly aligned magnetic microcapsules in nerve guidance conduits with remotely spatiotemporally controlled release to enhance peripheral nerve repair. ACS applied materials & interfaces, 14(41), 46188–46200. https://doi.org/10.1021/acsami.2c11362
- [10] Asgharkhani, E., Fathi Azarbayjani, A., Irani, S., Chiani, M., Saffari, Z., Norouzian, D., … & Atyabi, S. M. (2018). Artemisinin-loaded niosome and pegylated niosome: physico-chemical characterization and effects on MCF-7 cell proliferation. Journal of pharmaceutical investigation, 48(3), 251–256. https://doi.org/10.1007/s40005-017-0331-y
- [11] Yasamineh, S., Yasamineh, P., Ghafouri Kalajahi, H., Gholizadeh, O., Yekanipour, Z., Afkhami, H., … & Dadashpour, M. (2022). A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. International journal of pharmaceutics, 624, 121878. https://doi.org/10.1016/j.ijpharm.2022.121878
- [12] Riya, S. (2022). An overview on Niosomes: novel pharmaceutical drug delivery system. Journal of drug delivery & therapeutics, 12, 171. https://doi.org/10.22270/jddt.v12i2-s.5264
- [13] Badri, S., Sailaja, P., Annagowni, N. R., Lunjala, R. S., Seshu, D. (2022). A review on niosomes as novel drug delivary system. International journal of indigenous herbs and drugs, 7(5), 87–93. https://doi.org/10.46956/ijihd.v7i5.352
- [14] Hazira, R. M. N., Reddy, M. S., Hazira, R. M. N. (2023). Niosomes: a nanocarrier drug delivery system. GSC biological and pharmaceutical sciences, 22(2), 120–127. https://doi.org/10.30574/gscbps.2023.22.2.0062
- [15] Mallick, S., Pal, K., Chandra, F., & Koner, A. L. (2016). Investigation of the effect of cucurbit [7] uril complexation on the photophysical and acid--base properties of the antimalarial drug quinine. Physical chemistry chemical physics, 18(44), 30520–30529. https://doi.org/10.1039/C6CP04931A
- [16] Chandra, F., Kumar, P., & Koner, A. L. (2018). Encapsulation and modulation of protolytic equilibrium of β-carboline-based norharmane drug by cucurbit[7]uril and micellar environments for enhanced cellular uptake. Colloids and surfaces b: biointerfaces, 171, 530–537. https://doi.org/10.1016/j.colsurfb.2018.07.061
- [17] Saharawat, S., & Verma, S. (2024). A comprehensive review on niosomes as a strategy in targeted drug delivery: pharmaceutical, and herbal cosmetic applications. Current drug delivery, 21(11), 1460–1473. https://doi.org/10.2174/0115672018269199231121055548
- [18] Sharifi-Azad, M., Zenjanab, M. K., Shahpouri, M., Adili-Aghdam, M. A., Fathi, M., & Jahanban-Esfahlan, R. (2024). Codelivery of methotrexate and silibinin by niosome nanoparticles for enhanced chemotherapy of CT26 colon cancer cells. Biomedical materials, 19(5), 55015. https://doi.org/10.1088/1748-605X/ad5d9b
- [19] Dubey, N., Ramteke, S., Jain, N. K., Dutta, T., & Koner, A. L. (2023). Glucose-derived carbon dots for targeted delivery of doxorubicin in cancer therapy. New journal of chemistry, 47(35), 16390–16398. https://doi.org/10.1039/D3NJ02843G
- [20] Moghtaderi, M., Sedaghatnia, K., Bourbour, M., Fatemizadeh, M., Salehi Moghaddam, Z., Hejabi, F., … & Farasati Far, B. (2022). Niosomes: a novel targeted drug delivery system for cancer. Medical oncology, 39(12), 240. https://doi.org/10.1007/s12032-022-01836-3
- [21] Rathee, J., Kanwar, R., Kaushik, D., Salunke, D. B., & Mehta, S. K. (2020). Niosomes as efficient drug delivery modules for encapsulation of Toll-like receptor 7 agonists and IDO-inhibitor. Applied surface science, 505, 144078. https://doi.org/10.1016/j.apsusc.2019.144078
- [22] Bhardwaj, P., Tripathi, P., Gupta, R., & Pandey, S. (2020). Niosomes: a review on niosomal research in the last decade. Journal of drug delivery science and technology, 56, 101581. https://doi.org/10.1016/j.jddst.2020.101581
- [23] Momekova, D. B., Gugleva, V. E., & Petrov, P. D. (2021). Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS omega, 6(49), 33265–33273. https://doi.org/10.1021/acsomega.1c05083
- [24] Mooventhan, A., & Nivethitha, L. (2017). A narrative review on evidence-based antidiabetic effect of fenugreek (Trigonella Foenum-Graecum). International journal of nutrition, pharmacology, neurological diseases, 7(4), 84–87. 10.4103/ijnpnd.ijnpnd_36_17
- [25] Yang, J., Ran, Y., Yang, Y., Song, S., Wu, Y., Qi, Y., … & Li, G. (2021). 4-Hydroxyisoleucine alleviates macrophage-related chronic inflammation and metabolic syndrome in mice fed a high-fat diet. Frontiers in pharmacology, 11, 1–13. https://doi.org/10.3389/fphar.2020.606514
- [26] Shashikumar, J. N., Champawat, P. S., Mudgal, V. D., & Jain, S. K. (2019). Role of fenugreek (Trigonella foenum graecum) on in management of diabetes disease. Journal of pharmacognosy and phytochemistry, 8(4), 184–187. https://www.phytojournal.com/archives/2019/vol8issue4/PartD/8-3-655-127.pdf
- [27] Sun, W., Shahrajabian, M. H., & Cheng, Q. (2021). Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini reviews in medicinal chemistry, 21(6), 724–730. https://doi.org/10.2174/1389557520666201127104907
- [28] Bahloul, B., Castillo-Henríquez, L., Jenhani, L., Aroua, N., Ftouh, M., Kalboussi, N., … & Mignet, N. (2023). Nanomedicine-based potential phyto-drug delivery systems for diabetes. Journal of drug delivery science and technology, 82, 104377. https://doi.org/10.1016/j.jddst.2023.104377
- [29] Shilpa, S., Srinivasan, B. P., & Chauhan, M. (2011). Niosomes as vesicular carriers for delivery of proteins and biologicals. International journal of drug delivery, 3(1).
- [30] Tavano, L., Vivacqua, M., Carito, V., Muzzalupo, R., Caroleo, M. C., & Nicoletta, F. (2013). Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids and surfaces b: biointerfaces, 102, 803–807. https://doi.org/10.1016/j.colsurfb.2012.09.019
- [31] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of Metformin Hydrochloride nanoliposomes: evaluation of physicochemical characteristics and release kinetics. International journal of nano dimension, 9(3), 298–313. https://journals.iau.ir/article_659887_c9737398d6ce3f78d13a1fa5900b2c17.pdf
- [32] Tapeh, S. M. T., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517
- [33] Baranei, M., Taheri, R. A., Tirgar, M., Saeidi, A., Oroojalian, F., Uzun, L., … & Goodarzi, V. (2021). Anticancer effect of green tea extract (GTE)-loaded pH-responsive niosome Coated with PEG against different cell lines. Materials today communications, 26, 101751. https://doi.org/10.1016/j.mtcomm.2020.101751
- [34] Tasnim, K. N., Rahman, A., Newaj, S. M., Mahmud, O., Monira, S., Khan, T. Z., … & Sharker, S. M. (2024). Trackable liposomes for in vivo delivery tracing toward personalized medicine care under NIR light on skin tumor. ACS applied bio materials, 7(5), 3190–3201. https://doi.org/10.1021/acsabm.4c00203
- [35] Kianinejad, N., Razeghifard, R., Omidian, H. H., Omidi, Y., & Kwon, Y. M. (2025). Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A2. Journal of liposome research, 35(2), 105–116. https://doi.org/10.1080/08982104.2024.2410748
- [36] Shehata, T., Kono, Y., Higaki, K., Kimura, T., & Ogawara, K. (2023). In vivo distribution characteristics and anti-tumor effects of doxorubicin encapsulated in PEG-modified niosomes in solid tumor-bearing mice. Journal of drug delivery science and technology, 80, 104122. https://doi.org/10.1016/j.jddst.2022.104122
- [37] Saharkhiz, S., Zarepour, A., Nasri, N., Cordani, M., & Zarrabi, A. (2023). A comparison study between doxorubicin and curcumin co-administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy. European journal of pharmaceutical sciences, 191, 106600. https://doi.org/10.1016/j.ejps.2023.106600