Development and in Vitro Characterization of Niosomal Carriers Niosomal Carriers for Sustained Drug Delivery

Authors

  • Alireza Hosseinzadeh Gavon Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
  • Mojtaba Khanpour * Department of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China. https://orcid.org/0000-0002-8011-3720
  • Milad Farrokh Pour National Institute of Genetic Engineering and Biotechnology.

https://doi.org/10.48313/bic.v2i1.35

Abstract

Drug delivery systems are designed to enhance bioavailability while overcoming the limitations of conventional dosing strategies. Vesicular carriers, such as niosomes, have attracted attention for their excellent stability, cost-effectiveness, and sustained-release properties. Niosomes can encapsulate both lipophilic and hydrophilic drugs, making them versatile carriers for a wide range of therapeutics. Recent studies have focused on optimizing niosomes for targeted drug delivery, exemplified by the encapsulation of 4-Hydroxyisoleucine (4-HIL) for diabetes management. In this study, 4-HIL isolated from fenugreek seeds was incorporated into niosomes and PEGylated niosomes using the thin-film hydration method. The resulting 4-HIL-loaded niosomes exhibited semi-spherical, smooth morphologies with a particle size of ~200 nm, a Zeta Potential (ZP) of -22 mV, and entrapment efficiencies ranging from 55.1% to 87.1%. Fourier-Transform Infrared (FTIR) spectroscopy confirmed hydrogen bonding between Span 60 and cholesterol within the niosomal structure. PEGylation increased vesicle sizes to 460–580 nm and improved entrapment efficiencies to 75.43–90.1%, highlighting the potential of this formulation as a promising carrier for antidiabetic therapy.

Keywords:

Niosomes, 4-Hydroxyisoleucine, Drug delivery, Polyethylene glycol, Encapsulation

References

  1. [1] Sharma, R., Borah, S. J., Kumar, S., Gupta, A., Kumari, V., Kumar, R., … & Kumar, V. (2023). Emerging trends in nano-based antidiabetic therapeutics: a path to effective diabetes management. Materials advances, 4(15), 3091–3113. https://doi.org/10.1039/D3MA00159H

  2. [2] Rai, V. K., Mishra, N., Agrawal, A. K., Jain, S., & Yadav, N. P. (2016). Novel drug delivery system: an immense hope for diabetics. Drug delivery, 23(7), 2371–2390. https://doi.org/10.3109/10717544.2014.991001

  3. [3] Domingo-Lopez, D. A., Lattanzi, G., H. J. Schreiber, L., Wallace, E. J., Wylie, R., O’Sullivan, J., … & Duffy, G. P. (2022). Medical devices, smart drug delivery, wearables and technology for the treatment of Diabetes Mellitus. Advanced drug delivery reviews, 185, 114280. https://doi.org/10.1016/j.addr.2022.114280

  4. [4] Nel, J., Elkhoury, K., Velot, É., Bianchi, A., Acherar, S., Francius, G., … & Arab-Tehrany, E. (2023). Functionalized liposomes for targeted breast cancer drug delivery. Bioactive materials, 24, 401–437. https://doi.org/10.1016/j.bioactmat.2022.12.027

  5. [5] Izhar, M. P., Hafeez, A., Kushwaha, P., & Simrah. (2023). Drug delivery through Niosomes: a comprehensive review with therapeutic applications. Journal of cluster science, 34(5), 2257–2273. https://doi.org/10.1007/s10876-023-02423-w

  6. [6] Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., Wu, M., … & Gao, H. (2023). Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese chemical letters, 34(2), 107518. https://doi.org/10.1016/j.cclet.2022.05.032

  7. [7] Souto, E. B., Cano, A., Martins-Gomes, C., Coutinho, T. E., Zielińska, A., & Silva, A. M. (2022). Microemulsions and nanoemulsions in skin drug delivery. Bioengineering, 9(4), 158. https://doi.org/10.3390/bioengineering9040158

  8. [8] Martinez-Borrajo, R., Diaz-Rodriguez, P., & Landin, M. (2023). Rationalized design to explore the full potential of PLGA microspheres as drug delivery systems. Drug delivery, 30(1), 2219864. https://doi.org/10.1080/10717544.2023.2219864

  9. [9] Huang, W. C., Lin, C. C., Chiu, T. W., & Chen, S. Y. (2022). 3D gradient and linearly aligned magnetic microcapsules in nerve guidance conduits with remotely spatiotemporally controlled release to enhance peripheral nerve repair. ACS applied materials & interfaces, 14(41), 46188–46200. https://doi.org/10.1021/acsami.2c11362

  10. [10] Asgharkhani, E., Fathi Azarbayjani, A., Irani, S., Chiani, M., Saffari, Z., Norouzian, D., … & Atyabi, S. M. (2018). Artemisinin-loaded niosome and pegylated niosome: physico-chemical characterization and effects on MCF-7 cell proliferation. Journal of pharmaceutical investigation, 48(3), 251–256. https://doi.org/10.1007/s40005-017-0331-y

  11. [11] Yasamineh, S., Yasamineh, P., Ghafouri Kalajahi, H., Gholizadeh, O., Yekanipour, Z., Afkhami, H., … & Dadashpour, M. (2022). A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. International journal of pharmaceutics, 624, 121878. https://doi.org/10.1016/j.ijpharm.2022.121878

  12. [12] Riya, S. (2022). An overview on Niosomes: novel pharmaceutical drug delivery system. Journal of drug delivery & therapeutics, 12, 171. https://doi.org/10.22270/jddt.v12i2-s.5264

  13. [13] Badri, S., Sailaja, P., Annagowni, N. R., Lunjala, R. S., Seshu, D. (2022). A review on niosomes as novel drug delivary system. International journal of indigenous herbs and drugs, 7(5), 87–93. https://doi.org/10.46956/ijihd.v7i5.352

  14. [14] Hazira, R. M. N., Reddy, M. S., Hazira, R. M. N. (2023). Niosomes: a nanocarrier drug delivery system. GSC biological and pharmaceutical sciences, 22(2), 120–127. https://doi.org/10.30574/gscbps.2023.22.2.0062

  15. [15] Mallick, S., Pal, K., Chandra, F., & Koner, A. L. (2016). Investigation of the effect of cucurbit [7] uril complexation on the photophysical and acid--base properties of the antimalarial drug quinine. Physical chemistry chemical physics, 18(44), 30520–30529. https://doi.org/10.1039/C6CP04931A

  16. [16] Chandra, F., Kumar, P., & Koner, A. L. (2018). Encapsulation and modulation of protolytic equilibrium of β-carboline-based norharmane drug by cucurbit[7]uril and micellar environments for enhanced cellular uptake. Colloids and surfaces b: biointerfaces, 171, 530–537. https://doi.org/10.1016/j.colsurfb.2018.07.061

  17. [17] Saharawat, S., & Verma, S. (2024). A comprehensive review on niosomes as a strategy in targeted drug delivery: pharmaceutical, and herbal cosmetic applications. Current drug delivery, 21(11), 1460–1473. https://doi.org/10.2174/0115672018269199231121055548

  18. [18] Sharifi-Azad, M., Zenjanab, M. K., Shahpouri, M., Adili-Aghdam, M. A., Fathi, M., & Jahanban-Esfahlan, R. (2024). Codelivery of methotrexate and silibinin by niosome nanoparticles for enhanced chemotherapy of CT26 colon cancer cells. Biomedical materials, 19(5), 55015. https://doi.org/10.1088/1748-605X/ad5d9b

  19. [19] Dubey, N., Ramteke, S., Jain, N. K., Dutta, T., & Koner, A. L. (2023). Glucose-derived carbon dots for targeted delivery of doxorubicin in cancer therapy. New journal of chemistry, 47(35), 16390–16398. https://doi.org/10.1039/D3NJ02843G

  20. [20] Moghtaderi, M., Sedaghatnia, K., Bourbour, M., Fatemizadeh, M., Salehi Moghaddam, Z., Hejabi, F., … & Farasati Far, B. (2022). Niosomes: a novel targeted drug delivery system for cancer. Medical oncology, 39(12), 240. https://doi.org/10.1007/s12032-022-01836-3

  21. [21] Rathee, J., Kanwar, R., Kaushik, D., Salunke, D. B., & Mehta, S. K. (2020). Niosomes as efficient drug delivery modules for encapsulation of Toll-like receptor 7 agonists and IDO-inhibitor. Applied surface science, 505, 144078. https://doi.org/10.1016/j.apsusc.2019.144078

  22. [22] Bhardwaj, P., Tripathi, P., Gupta, R., & Pandey, S. (2020). Niosomes: a review on niosomal research in the last decade. Journal of drug delivery science and technology, 56, 101581. https://doi.org/10.1016/j.jddst.2020.101581

  23. [23] Momekova, D. B., Gugleva, V. E., & Petrov, P. D. (2021). Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS omega, 6(49), 33265–33273. https://doi.org/10.1021/acsomega.1c05083

  24. [24] Mooventhan, A., & Nivethitha, L. (2017). A narrative review on evidence-based antidiabetic effect of fenugreek (Trigonella Foenum-Graecum). International journal of nutrition, pharmacology, neurological diseases, 7(4), 84–87. 10.4103/ijnpnd.ijnpnd_36_17

  25. [25] Yang, J., Ran, Y., Yang, Y., Song, S., Wu, Y., Qi, Y., … & Li, G. (2021). 4-Hydroxyisoleucine alleviates macrophage-related chronic inflammation and metabolic syndrome in mice fed a high-fat diet. Frontiers in pharmacology, 11, 1–13. https://doi.org/10.3389/fphar.2020.606514

  26. [26] Shashikumar, J. N., Champawat, P. S., Mudgal, V. D., & Jain, S. K. (2019). Role of fenugreek (Trigonella foenum graecum) on in management of diabetes disease. Journal of pharmacognosy and phytochemistry, 8(4), 184–187. https://www.phytojournal.com/archives/2019/vol8issue4/PartD/8-3-655-127.pdf

  27. [27] Sun, W., Shahrajabian, M. H., & Cheng, Q. (2021). Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini reviews in medicinal chemistry, 21(6), 724–730. https://doi.org/10.2174/1389557520666201127104907

  28. [28] Bahloul, B., Castillo-Henríquez, L., Jenhani, L., Aroua, N., Ftouh, M., Kalboussi, N., … & Mignet, N. (2023). Nanomedicine-based potential phyto-drug delivery systems for diabetes. Journal of drug delivery science and technology, 82, 104377. https://doi.org/10.1016/j.jddst.2023.104377

  29. [29] Shilpa, S., Srinivasan, B. P., & Chauhan, M. (2011). Niosomes as vesicular carriers for delivery of proteins and biologicals. International journal of drug delivery, 3(1).

  30. [30] Tavano, L., Vivacqua, M., Carito, V., Muzzalupo, R., Caroleo, M. C., & Nicoletta, F. (2013). Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids and surfaces b: biointerfaces, 102, 803–807. https://doi.org/10.1016/j.colsurfb.2012.09.019

  31. [31] Niknejad, K., Sharifzadeh Baei, M., & Motallebi Tala Tapeh, S. (2018). Synthesis of Metformin Hydrochloride nanoliposomes: evaluation of physicochemical characteristics and release kinetics. International journal of nano dimension, 9(3), 298–313. https://journals.iau.ir/article_659887_c9737398d6ce3f78d13a1fa5900b2c17.pdf

  32. [32] Tapeh, S. M. T., Baei, M. S., & Keshel, S. H. (2021). Synthesis of thermogel modified with biomaterials as carrier for hUSSCs differentiation into cardiac cells: physicomechanical and biological assessment. Materials science and engineering: c, 119, 111517. https://doi.org/10.1016/j.msec.2020.111517

  33. [33] Baranei, M., Taheri, R. A., Tirgar, M., Saeidi, A., Oroojalian, F., Uzun, L., … & Goodarzi, V. (2021). Anticancer effect of green tea extract (GTE)-loaded pH-responsive niosome Coated with PEG against different cell lines. Materials today communications, 26, 101751. https://doi.org/10.1016/j.mtcomm.2020.101751

  34. [34] Tasnim, K. N., Rahman, A., Newaj, S. M., Mahmud, O., Monira, S., Khan, T. Z., … & Sharker, S. M. (2024). Trackable liposomes for in vivo delivery tracing toward personalized medicine care under NIR light on skin tumor. ACS applied bio materials, 7(5), 3190–3201. https://doi.org/10.1021/acsabm.4c00203

  35. [35] Kianinejad, N., Razeghifard, R., Omidian, H. H., Omidi, Y., & Kwon, Y. M. (2025). Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A2. Journal of liposome research, 35(2), 105–116. https://doi.org/10.1080/08982104.2024.2410748

  36. [36] Shehata, T., Kono, Y., Higaki, K., Kimura, T., & Ogawara, K. (2023). In vivo distribution characteristics and anti-tumor effects of doxorubicin encapsulated in PEG-modified niosomes in solid tumor-bearing mice. Journal of drug delivery science and technology, 80, 104122. https://doi.org/10.1016/j.jddst.2022.104122

  37. [37] Saharkhiz, S., Zarepour, A., Nasri, N., Cordani, M., & Zarrabi, A. (2023). A comparison study between doxorubicin and curcumin co-administration and co-loading in a smart niosomal formulation for MCF-7 breast cancer therapy. European journal of pharmaceutical sciences, 191, 106600. https://doi.org/10.1016/j.ejps.2023.106600

Published

2025-03-13

How to Cite

Hosseinzadeh Gavon, A., Khanpour, M., & Farrokh Pour, M. (2025). Development and in Vitro Characterization of Niosomal Carriers Niosomal Carriers for Sustained Drug Delivery. Biocompounds, 2(1), 53-62. https://doi.org/10.48313/bic.v2i1.35