Hyperfunction and Superhyperfunction in Chemistry
Abstract
Hyperstructures and their hierarchical extensions, the Superhyperstructures, furnish a flexible framework
for modelling multilayered phenomena across a wide range of disciplines. Viewed through the lens of
functions, these ideas manifest as HyperFunctions and SuperHyperFunctions, whose values belong to
iterated powersets rather than to ordinary codomains. Although the structural and computational aspects
of hyperstructures have been explored well beyond mathematics—including notable work in chemistry—the
corresponding functional counterparts remain largely unexamined in that context. To address this gap,
the present paper introduces several precise definitions of HyperFunctions and SuperHyperFunctions
tailored to chemical systems and investigates their fundamental properties. These set-valued constructs
capture nested reactivity patterns and multi-step pathways, thereby opening new avenues for describing
complex chemical processes.
Keywords:
Hyperfunction, Superhyperfunction, Hyperstructure, Superhyperstructure, Partition function, Reaction rate function, Dose–response function, Fitness functionReferences
- [1] Amiri, G. R., Mousarezaei, R., & Rahnama, S. (2025). Soft hyperstructures and their applications. New mathematics and natural computation, 21(02), 577-595. https://doi.org/10.1142/S1793005725500267
- [2] Oguz. G., & Davvaz B. (2021). Soft topological hyperstructure. Journal of intelligent & fuzzy systems: Applications in engineering and technology, 40(5), 8755-8764. https://doi.org/10.3233/JIFS-200242
- [3] Vougiouklis, T. (2020). Fundamental relations in hv-structures. The’judging from the results’ proof. Journal of algebraic hyperstructures and logical algebras, 1(1), 21-36. https://doi.org/10.29252/hatef.jahla.1.1.2
- [4] Al Tahan, M., & Davvaz, B. (2018). Weak chemical hyperstructures associated to electrochemical cells. Iranian journal of mathematical chemistry, 9(1), 65-75. https://doi.org/10.22052/ijmc.2017.88790.1294
- [5] Smarandache, F. (2024). Foundation of superhyperstructure & neutrosophic superhyperstructure (review paper). Neutrosophic sets and systems, 63, 367-381. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://fs.unm.edu/NSS/SuperHyperStructure.pdf
- [6] Das, A. K., Das, R., Das, S., Debnath, B. K., Granados, C., Shil, B., & Das, R. (2025). A comprehensive study of neutrosophic superhyper bci-semigroups and their algebraic significance. Transactions on fuzzy sets and systems, 4(2), 80-101. https://doi.org/10.71602/tfss.2025.1198050
- [7] Villegas, S. M. B., Fritas, W. M., Villegas, C. R. B., Rivera, M. Y. F. F., Rivera, R. E., Puma, L. D. B., & Fernández, D. M. M. (2025). Using plithogenic n-superhypergraphs to assess the degree of relationship between information skills and digital competencies. Neutrosophic sets and systems, 84, 513-524. https://doi.org/10.5281/zenodo.15641273
- [8] Ghods, M., Rostami, Z., & Smarandache, F. (2022). Introduction to neutrosophic restricted superhypergraphs and neutrosophic restricted superhypertrees and several of their properties. Neutrosophic sets and systems, 50(1), 480-487. https://www.researchgate.net/publication/362188894
- [9] Huang, M., & Li, F. (2025). Optimizing AI-driven digital resources in vocational english learning using plithogenic n-superhypergraph structures for adaptive content recommendation. Neutrosophic sets and systems, 88(1), 283-295. https://B2n.ir/tr7255
- [10] Hamidi, M., Smarandache, F., & Davneshvar, E. (2022). Spectrum of superhypergraphs via flows. Journal of mathematics, 2022(1). https://doi.org/10.1155/2022/9158912
- [11] Kargın, A., & Şahin, M. (2023). Superhyper groups and neutro–superhyper groups. In neutrosophic superhyperalgebra and new types of topologies (pp. 25-42). University of New Mexico. https://B2n.ir/bk5781
- [12] Jahanpanah, S., & Daneshpayeh, R. (2024). An outspread on valued logic superhyperalgebras. Facta universitatis, series: Mathematics and informatics, 39(3), 427-437. https://doi.org/10.22190/FUMI230707029J
- [13] Smarandache, F., Şahin, M., Bakbak, D., Uluçay, V., & Kargın, A. (2022). History of superhyperalgebra and neutrosophic superhyperalgebra (revisited again). In Neutrosophic algebraic structures and their applications (pp. 10-15). Infinite Study. https://www.researchgate.net/publication/365789500
- [14] Smarandache, F. (2022). Extension of hyperalgebra to superhyperalgebra and neutrosophic superhyperalgebra (revisited). International conference on computers communications and control (pp. 427-432). Springer international publishing. https://doi.org/10.1007/978-3-031-16684-6_36
- [15] Al-Tahan, M., & Davvaz, B. (2022). Chemical hyperstructures for elements with four oxidation states. Iranian journal of mathematical chemistry, 13(2), 85-97. https://doi.org/10.22052/ijmc.2022.246174.1615
- [16] Ostadhadi-Dehkordi, S., Abdizadeh, S., & Hamrahzadeh, F. (2024). A hyperstructural approach to chemical reactions as mathematical Models. Afrika matematika, 35(1), 15. https://doi.org/10.1007/s13370-023-01152-7
- [17] Davvaz, B., Dehghan Nezhad, A., & Benvidi, A. (2012). Chemical hyperalgebra: Dismutation reactions. Match-communications in mathematical and computer chemistry, 67(1), 55-63. https://www.researchgate.net/publication/267150018
- [18] Chun, K. M. (2014). Chemical hyperstructures of chemical reactions for iron and indium. Journal of the chungcheong mathematical society, 27(2), 319-319. https://doi.org/10.14403/jcms.2014.27.2.319
- [19] Agusfrianto, F. A., Andromeda, S., & Hariri, M. (2024). Hyperstructures in chemical hyperstructures of redox reactions with three and four oxidation states. JTAM (Jurnal Teori dan Aplikasi Matematika), 8(1), 50-57. https://doi.org/10.31764/jtam.v8i1.17011
- [20] Smarandache, F. (2022). The superhyperfunction and the neutrosophic superhyperfunction (Revisited again) (Vol. 3). Infinite Study. https://B2n.ir/ns6697
- [21] Smarandache, F. (2023). Superhyperfunction, superhyperstructure, neutrosophic superhyperfunction and neutrosophic superhyperstructure: Current understanding and future directions. Infinite Study. https://doi.org/10.61356/j.nswa.2023.115
- [22] Huang, M., & Li, F. (2025). Modeling cross-cultural competence in vocational education internationalization using neutrosophic superhyperfunctions and big data driven cultural clusters. Neutrosophic sets and systems, 88(1), 262-373 . https://doi.org/10.5281/zenodo.15786743
- [23] Xie, Y. (2025). A neutrosophic superhyper number framework for accurate statistical evaluation of financial performance in high-tech enterprises. Neutrosophic sets and systems, 88(1), 905-918. https://B2n.ir/du6647
- [24] Jdid, M., Smarandache, F., & Fujita, T. (2025). A linear mathematical model of the vocational training problem in a company using neutrosophic logic, hyperfunctions, and superhyperfunction. Neutrosophic sets and systems, 87, 1-11. https://www.researchgate.net/publication/392238093
- [25] Jech, T. (2003). Set theory: The third millennium edition, revised and expanded. Springer. https://doi.org/10.1017/S1079898600003358
- [26] Smarandache, F. (2024). Foundation of superhyperstructure & neutrosophic superhyperstructure. Neutrosophic sets and systems, 63, 367-381. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://fs.unm.edu/NSS/SuperHyperStructure.pdf
- [27] Rahmati, M., & Hamidi, M. (2023). Extension of g-algebras to superhyper g-algebras. Neutrosophic sets and systems, 55, 557-567. https://doi.org/10.5281/zenodo.7879543
- [28] Al-Odhari, A. (2025). Neutrosophic power-set and neutrosophic hyper-structure of neutrosophic set of three types. Annals of pure and applied mathematics, 31(2), 125-146. http://dx.doi.org/10.22457/apam.v31n2a05964
- [29] Al-Odhari, A. (2025). A brief comparative study on hyperstructure, super hyperstructure, and n-super superhyperstructure. Neutrosophic knowledge, 6, 39-49. https://doi.org/10.5281/zenodo.15107294
- [30] Fujita, T., Jdid, M., & Smarandache, F. (2025). Hyperfunctions and superhyperfunctions in linear programming: Foundations and applications. international journal of neutrosophic science, 26(4), 65-76. https://doi.org/10.54216/IJNS.260408
- [31] Rychlewski, J. (2013). Explicitly correlated wave functions in chemistry and physics: Theory and applications (Vol. 13). Springer Science & Business Media. https://doi.org/10.1007/978-94-017-0313-0
- [32] Hwang, J. T., Dougherty, E. P., Rabitz, S., & Rabitz, H. (1978). The green’s function method of sensitivity analysis in chemical kinetics. The journal of chemical physics, 69(11), 5180-5191. https://doi.org/10.1063/1.436465
- [33] Csanak, G., Taylor, H. S., & Yaris, R. (1971). Green's function technique in atomic and molecular physics. In Advances in atomic and molecular physics (pp. 287-361). Academic Press. https://doi.org/10.1016/S0065-2199(08)60363-2
- [34] Pernot, P., & Savin, A. (2018). Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors. The journal of chemical physics, 148(24), 241707–241707. https://doi.org/10.1063/1.5016248
- [35] Crichton, R. R. (2012). Biological inorganic chemistry: A new introduction to molecular structure and function. Elsevier. https://B2n.ir/hm4017
- [36] Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte chemie international edition, 40(11), 2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::AID-ANIE2004%3E3.0.CO;2-5
- [37] Haddad, W. M., Chellaboina, V., & Nersesov, S. G. (2009). Thermodynamics: A dynamical systems approach. Princeton University Press. https://B2n.ir/pn7366
- [38] Anderson, G. M. (2005). Thermodynamics of natural systems. Cambridge University Press. https://B2n.ir/hm3462
- [39] Hill, T. L. (1962). Thermodynamics of small systems. The journal of chemical physics, 36(12), 3182-3197. https://doi.org/10.1063/1.1732447
- [40] Vidler, M., & Tennyson, J. (2000). Accurate partition function and thermodynamic data for water. The journal of chemical physics, 113(21), 9766-9771. https://doi.org/10.1063/1.1321769
- [41] Hartmann, A. K. (2005). Calculation of partition functions by measuring component distributions. Physical review letters, 94(5), 050601. https://doi.org/10.1103/PhysRevLett.94.050601
- [42] Grosh, J., Jhon, M. S., Ree, T., & Eyring, H. (1967). On an improved partition function of significant structure theory. Proceedings of the national academy of sciences, 57(6), 1566-1572. https://doi.org/10.1073/pnas.57.6.1566
- [43] Ganesh, N. (2017). A thermodynamic treatment of intelligent systems. 2017 IEEE International conference on rebooting computing (ICRC) (pp. 1-4). IEEE. https://doi.org/10.1109/ICRC.2017.8123676
- [44] Enderle, J. S. (2020). Toward a thermodynamics of meaning. https://doi.org/10.48550/arXiv.2009.11963
- [45] Elstner, M., Cui, Q., & Gruden, M. (2024). State sum (partition function) for noninteracting systems. In Introduction to statistical thermodynamics: A molecular perspective (pp. 293-315). Springer International Publishing. https://doi.org/10.1007/978-3-031-54994-6_11
- [46] Palma, C. A., Björk, J., Klappenberger, F., Arras, E., Kühne, D., Stafström, S., & Barth, J. V. (2015). Visualization and thermodynamic encoding of single-molecule partition function projections. Nature communications, 6(1). https://doi.org/10.1038/ncomms7210
- [47] Agusfrianto, F. A., Al Tahan, M., & Mahatma, Y. (2023). An introduction to neutrohyperstructures on some chemical reactions. In NeutroGeometry, neutroalgebra, and superhyperalgebra in today's world (pp. 81-96). IGI Global. https://doi.org/10.4018/978-1-6684-4740-6.ch004
- [48] Eyring, H. (1935). The activated complex in chemical reactions. The Journal of chemical physics, 3(2), 107-115. https://doi.org/10.1063/1.1749604
- [49] Tavakoli, M., Shmakov, A., Ceccarelli, F., & Baldi, P. (2022). Rxn hypergraph: A hypergraph attention model for chemical reaction representation. https://doi.org/10.48550/arXiv.2201.01196
- [50] Pollak, E., & Talkner, P. (2005). Reaction rate theory: What it was, where is it today, and where is it going?. Chaos: An interdisciplinary journal of nonlinear science, 15(2). https://doi.org/10.1063/1.1858782
- [51] Hänggi, P., Talkner, P., & Borkovec, M. (1990). Reaction-rate theory: Fifty years after Kramers. Reviews of modern physics, 62(2), 251-341. https://doi.org/10.1103/RevModPhys.62.251
- [52] Hammond, G. S. (1955). A correlation of reaction rates. Journal of the American chemical society, 77(2), 334-338. https://doi.org/10.1021/ja01607a027
- [53] Connors, K. A. (1990). Chemical kinetics: The study of reaction rates in solution. Wiley-VCH Verlag GmbH. https://books.google.com/books/about/Chemical_Kinetics.html?id=nHux3YED1HsC
- [54] Levenspiel, O. (1998). Chemical reaction engineering. John wiley & sons. https://B2n.ir/hq7538
- [55] Yu, P. Y., & Craciun, G. (2018). Mathematical analysis of chemical reaction systems. Israel journal of chemistry, 58(6-7), 733-741. https://doi.org/10.1002/ijch.201800003
- [56] Zhang, Y., Xu, A., Zhang, G., & Zhu, C. (2015). Study on the influence of chemical reaction rate on detonation characteristics. Advances in condensed matter physics, 4(3), 85-92. http://dx.doi.org/10.12677/cmp.2015.43010
- [57] Huang, C. H., & Li, B. Y. (2014). A non-linear inverse problem in estimating the reaction rate function for an annular-bed reactor. International journal of chemical reactor engineering, 12(1), 271-283. https://doi.org/10.1515/ijcre-2013-0142
- [58] Peper, A. (2009). Aspects of the relationship between drug dose and drug effect. Dose-Response, 7(2), 172-192. https://doi.org/10.2203/dose-response.08-019.Peper
- [59] Doogue, M. P., & Polasek, T. M. (2011). Drug dosing in renal disease. The clinical biochemist reviews, 32(2), 69-73. https://pmc.ncbi.nlm.nih.gov/articles/PMC3100283/
- [60] Schindler, M. (2022). Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions. Scientific reports, 12(1), 10524. https://doi.org/10.1038/s41598-022-13469-7
- [61] Chow, C. C., Ong, K. M., Dougherty, E. J., & Simons Jr, S. S. (2011). Inferring mechanisms from dose–response curves. In Methods in enzymology (pp. 465-483). Academic Press. https://doi.org/10.1016/B978-0-12-381270-4.00016-0
- [62] Schindler, M. (2017). Theory of synergistic effects: Hill-type response surfaces as ‘null-interaction’models for mixtures. Theoretical biology and medical modelling, 14(1), 15. https://doi.org/10.1186/s12976-017-0060-y
- [63] Guardabascio, B., & Ventura, M. (2014). Estimating the dose–response function through a generalized linear model approach. The Stata Journal, 14(1), 141-158. https://doi.org/10.1177/1536867X1401400110
- [64] Roman, H. A., Walsh, T. L., Coull, B. A., Dewailly, É., Guallar, E., Hattis, D., ... ., & Rice, G. (2011). Evaluation of the cardiovascular effects of methylmercury exposures: current evidence supports development of a dose–response function for regulatory benefits analysis. Environmental health perspectives, 119(5), 607-614. https://doi.org/10.1289/ehp.1003012
- [65] Williams, M. S., Ebel, E. D., & Vose, D. (2011). Methodology for determining the appropriateness of a linear dose‐response function. Risk analysis: An international journal, 31(3), 345-350. https://doi.org/10.1111/j.1539-6924.2010.01518.x
- [66] Srivastava, M., & Payne, J. L. (2022). On the incongruence of genotype-phenotype and fitness landscapes. PLoS computational biology, 18(9), e1010524. https://doi.org/10.1371/journal.pcbi.1010524
- [67] Wahl, L. M., & Campos, P. R. (2023). Evolutionary rescue on genotypic fitness landscapes. Journal of the royal society interface, 20(208), 20230424. https://doi.org/10.1098/rsif.2023.0424
- [68] Katsonis, P., & Lichtarge, O. (2014). A formal perturbation equation between genotype and phenotype determines the evolutionary action of protein-coding variations on fitness. Genome research, 24(12), 2050-2058. https://doi.org/10.1101/gr.176214.114
- [69] De Jong, G. (1994). The fitness of fitness concepts and the description of natural selection. The quarterly review of biology, 69(1), 3-29. https://doi.org/10.1086/418431
- [70] Almulla, H., & Gay, G. (2022). Learning how to search: generating effective test cases through adaptive fitness function selection. Empirical software engineering, 27(2), 38. https://doi.org/10.1007/s10664-021-10048-8
- [71] Wedge, D. C., & Kell, D. B. (2008). Rapid prediction of optimum population size in genetic programming using a novel genotype- fitness correlation. Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp. 1315-1322). Association for computing machinery. https://doi.org/10.1145/1389095.1389346
- [72] Lande, R. (2007). Expected relative fitness and the adaptive topography of fluctuating selection. Evolution, 61(8), 1835-1846. https://doi.org/10.1111/j.1558-5646.2007.00170.x
- [73] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- [74] Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer science & business media. https://doi.org/10.1007/978-94-010-0646-0
- [75] Rosenfeld, A. (1975). Fuzzy graphs. In Fuzzy sets and their applications to cognitive and decision processes (pp. 77-95). Academic press. https://doi.org/10.1016/B978-0-12-775260-0.50008-6
- [76] Akram, M., Davvaz, B., & Feng, F. (2013). Intuitionistic fuzzy soft K-algebras. Mathematics in computer science, 7(3), 353-365. https://doi.org/10.1007/s11786-013-0158-5
- [77] Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite study. https://B2n.ir/sf7979
- [78] Smarandache, F. (2016). Neutrosophic overset, neutrosophic underset, and neutrosophic offset. Similarly for neutrosophic over-/under-/off-logic, probability, and statistics. Infinite Study. https://B2n.ir/jg5713
- [79] Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Single valued neutrosophic graphs. Journal of New theory, (10), 86-101. https://dergipark.org.tr/en/pub/jnt/issue/34504/381241
- [80] Balamurugan, M., Hakami, K. H., Ansari, M. A., Al-Masarwah, A., & Loganathan, K. (2024). Quadri-polar fuzzy fantastic ideals in bci-algebras: A topsis framework and application. European journal of pure and applied mathematics, 17(4), 3129-3155. https://doi.org/10.29020/nybg.ejpam.v17i4.5429
- [81] Torra, V., & Narukawa, Y. (2009). On hesitant fuzzy sets and decision. 2009 IEEE international conference on fuzzy systems (pp. 1378-1382). IEEE. https://doi.org/10.1109/FUZZY.2009.5276884
- [82] Xu, Z. (2014). Hesitant fuzzy sets theory (Vol. 314). Springer international publishing. https://doi.org/10.1007/978-3-319-04711-9
- [83] Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems, 25(6), 529-539. https://doi.org/10.1002/int.20418
- [84] Starosta, B., & Kosiński, W. (2009). Meta sets–another approach to fuzziness. In Views on fuzzy sets and systems from different perspectives: Philosophy and Logic, criticisms and applications (pp. 509-532). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-93802-6_25
- [85] Starosta, B. (2009). Fuzzy sets as metasets. Procceding of XI international PhD workshop (OWD 2009) (pp. 11-15). Conference archives polish association for knowledge management. https://B2n.ir/xd3798
- [86] lomiej Starosta, B. (2009). Application of meta sets to character recognition. Foundations of intelligent systems (pp. 602-611). Springer. https://doi.org/10.1007/978-3-642-04125-9#page=616
- [87] Khan, W. A., Arif, W., Nguyen, Q. H., Le, T. T., & Van Pham, H. (2024). Picture fuzzy directed hypergraphs with applications toward decision-making and managing hazardous chemicals. IEEE Access, 12, 87816-87827. https://doi.org/10.1109/ACCESS.2024.3415120
- [88] Das, S., Poulik, S., & Ghorai, G. (2024). Picture fuzzy ϕ-tolerance competition graphs with its application. Journal of ambient intelligence and humanized computing, 15(1), 547-559. https://doi.org/10.1007/s12652-023-04704-8
- [89] Cuong, B. C., & Kreinovich, V. (2013). Picture fuzzy sets-a new concept for computational intelligence problems. 2013 third world congress on information and communication technologies (WICT 2013) (pp. 1-6). IEEE. https://doi.org/10.1109/WICT.2013.7113099
- [90] Ali, J. (2023). Norm-based distance measure of q-rung orthopair fuzzy sets and its application in decision-making. Computational and applied mathematics, 42(4), 184. https://doi.org/10.1007/s40314-023-02313-x
- [91] Asif, M., Kattan, D. A., Pamučar, D., & Ali, G. (2021). q‐rung orthopair fuzzy matroids with application to human trafficking. Discrete dynamics in nature and society, 2021(1), 8261118. https://doi.org/10.1155/2021/8261118
- [92] Akram, M., Saleem, D., & Al-Hawary, T. (2020). Spherical fuzzy graphs with application to decision-making. Mathematical and computational applications, 25(1). https://doi.org/10.3390/mca25010008
- [93] PA, F. P., John, S. J., & P, R. K. (2020). On spherical fuzzy soft expert sets. American institute of physics conference proceedings (pp. 030001). American institute of physics publishing limited liability company. https://doi.org/10.1063/5.0017243
- [94] Kutlu Gündoğdu, F., & Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of intelligent & fuzzy systems, 36(1), 337-352. https://doi.org/10.3233/JIFS-181401
- [95] Jun, Y. B., Song, S. Z., & Kim, S. J. (2018). Length-fuzzy subalgebras in bck/bci-algebras. Mathematics, 6(1). https://doi.org/10.3390/math6010011
- [96] Tacha, N., Phayapsiang, P., & Iampan, A. (2022). Length and Mean Fuzzy UP-subalgebras of UP-algebras. Caspian journal of mathematical sciences, 11(1), 264-303. https://doi.org/10.22080/cjms.2021.17121.1416
- [97] Smarandache, F. (2018). Plithogenic set, an extension of crisp, fuzzy, intuitionistic fuzzy, and neutrosophic sets-revisited. Infinite study. https://B2n.ir/uk4359
- [98] Sultana, F., Gulistan, M., Ali, M., Yaqoob, N., Khan, M., Rashid, T., & Ahmed, T. (2023). A study of plithogenic graphs: Applications in spreading coronavirus disease (covid-19) globally. Journal of ambient intelligence and humanized computing, 14(10), 13139-13159. https://doi.org/10.1007/s12652-022-03772-6