Hyperfunction and Superhyperfunction in Chemistry

Authors

https://doi.org/10.48313/bic.vi.31

Abstract

Hyperstructures and their hierarchical extensions, the Superhyperstructures, furnish a flexible framework
for modelling multilayered phenomena across a wide range of disciplines. Viewed through the lens of
functions, these ideas manifest as HyperFunctions and SuperHyperFunctions, whose values belong to
iterated powersets rather than to ordinary codomains. Although the structural and computational aspects
of hyperstructures have been explored well beyond mathematics—including notable work in chemistry—the
corresponding functional counterparts remain largely unexamined in that context. To address this gap,
the present paper introduces several precise definitions of HyperFunctions and SuperHyperFunctions
tailored to chemical systems and investigates their fundamental properties. These set-valued constructs
capture nested reactivity patterns and multi-step pathways, thereby opening new avenues for describing
complex chemical processes.

Keywords:

Hyperfunction, Superhyperfunction, Hyperstructure, Superhyperstructure, Partition function, Reaction rate function, Dose–response function, Fitness function

References

  1. [1] Amiri, G. R., Mousarezaei, R., & Rahnama, S. (2025). Soft hyperstructures and their applications. New mathematics and natural computation, 21(02), 577-595. https://doi.org/10.1142/S1793005725500267

  2. [2] Oguz. G., & Davvaz B. (2021). Soft topological hyperstructure. Journal of intelligent & fuzzy systems: Applications in engineering and technology, 40(5), 8755-8764. https://doi.org/10.3233/JIFS-200242

  3. [3] Vougiouklis, T. (2020). Fundamental relations in hv-structures. The’judging from the results’ proof. Journal of algebraic hyperstructures and logical algebras, 1(1), 21-36. https://doi.org/10.29252/hatef.jahla.1.1.2

  4. [4] Al Tahan, M., & Davvaz, B. (2018). Weak chemical hyperstructures associated to electrochemical cells. Iranian journal of mathematical chemistry, 9(1), 65-75. https://doi.org/10.22052/ijmc.2017.88790.1294

  5. [5] Smarandache, F. (2024). Foundation of superhyperstructure & neutrosophic superhyperstructure (review paper). Neutrosophic sets and systems, 63, 367-381. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://fs.unm.edu/NSS/SuperHyperStructure.pdf

  6. [6] Das, A. K., Das, R., Das, S., Debnath, B. K., Granados, C., Shil, B., & Das, R. (2025). A comprehensive study of neutrosophic superhyper bci-semigroups and their algebraic significance. Transactions on fuzzy sets and systems, 4(2), 80-101. https://doi.org/10.71602/tfss.2025.1198050

  7. [7] Villegas, S. M. B., Fritas, W. M., Villegas, C. R. B., Rivera, M. Y. F. F., Rivera, R. E., Puma, L. D. B., & Fernández, D. M. M. (2025). Using plithogenic n-superhypergraphs to assess the degree of relationship between information skills and digital competencies. Neutrosophic sets and systems, 84, 513-524. https://doi.org/10.5281/zenodo.15641273

  8. [8] Ghods, M., Rostami, Z., & Smarandache, F. (2022). Introduction to neutrosophic restricted superhypergraphs and neutrosophic restricted superhypertrees and several of their properties. Neutrosophic sets and systems, 50(1), 480-487. https://www.researchgate.net/publication/362188894

  9. [9] Huang, M., & Li, F. (2025). Optimizing AI-driven digital resources in vocational english learning using plithogenic n-superhypergraph structures for adaptive content recommendation. Neutrosophic sets and systems, 88(1), 283-295. https://B2n.ir/tr7255

  10. [10] Hamidi, M., Smarandache, F., & Davneshvar, E. (2022). Spectrum of superhypergraphs via flows. Journal of mathematics, 2022(1). https://doi.org/10.1155/2022/9158912

  11. [11] Kargın, A., & Şahin, M. (2023). Superhyper groups and neutro–superhyper groups. In neutrosophic superhyperalgebra and new types of topologies (pp. 25-42). University of New Mexico. https://B2n.ir/bk5781

  12. [12] Jahanpanah, S., & Daneshpayeh, R. (2024). An outspread on valued logic superhyperalgebras. Facta universitatis, series: Mathematics and informatics, 39(3), 427-437. https://doi.org/10.22190/FUMI230707029J

  13. [13] Smarandache, F., Şahin, M., Bakbak, D., Uluçay, V., & Kargın, A. (2022). History of superhyperalgebra and neutrosophic superhyperalgebra (revisited again). In Neutrosophic algebraic structures and their applications (pp. 10-15). Infinite Study. https://www.researchgate.net/publication/365789500

  14. [14] Smarandache, F. (2022). Extension of hyperalgebra to superhyperalgebra and neutrosophic superhyperalgebra (revisited). International conference on computers communications and control (pp. 427-432). Springer international publishing. https://doi.org/10.1007/978-3-031-16684-6_36

  15. [15] Al-Tahan, M., & Davvaz, B. (2022). Chemical hyperstructures for elements with four oxidation states. Iranian journal of mathematical chemistry, 13(2), 85-97. https://doi.org/10.22052/ijmc.2022.246174.1615

  16. [16] Ostadhadi-Dehkordi, S., Abdizadeh, S., & Hamrahzadeh, F. (2024). A hyperstructural approach to chemical reactions as mathematical Models. Afrika matematika, 35(1), 15. https://doi.org/10.1007/s13370-023-01152-7

  17. [17] Davvaz, B., Dehghan Nezhad, A., & Benvidi, A. (2012). Chemical hyperalgebra: Dismutation reactions. Match-communications in mathematical and computer chemistry, 67(1), 55-63. https://www.researchgate.net/publication/267150018

  18. [18] Chun, K. M. (2014). Chemical hyperstructures of chemical reactions for iron and indium. Journal of the chungcheong mathematical society, 27(2), 319-319. https://doi.org/10.14403/jcms.2014.27.2.319

  19. [19] Agusfrianto, F. A., Andromeda, S., & Hariri, M. (2024). Hyperstructures in chemical hyperstructures of redox reactions with three and four oxidation states. JTAM (Jurnal Teori dan Aplikasi Matematika), 8(1), 50-57. https://doi.org/10.31764/jtam.v8i1.17011

  20. [20] Smarandache, F. (2022). The superhyperfunction and the neutrosophic superhyperfunction (Revisited again) (Vol. 3). Infinite Study. https://B2n.ir/ns6697

  21. [21] Smarandache, F. (2023). Superhyperfunction, superhyperstructure, neutrosophic superhyperfunction and neutrosophic superhyperstructure: Current understanding and future directions. Infinite Study. https://doi.org/10.61356/j.nswa.2023.115

  22. [22] Huang, M., & Li, F. (2025). Modeling cross-cultural competence in vocational education internationalization using neutrosophic superhyperfunctions and big data driven cultural clusters. Neutrosophic sets and systems, 88(1), 262-373 . https://doi.org/10.5281/zenodo.15786743

  23. [23] Xie, Y. (2025). A neutrosophic superhyper number framework for accurate statistical evaluation of financial performance in high-tech enterprises. Neutrosophic sets and systems, 88(1), 905-918. https://B2n.ir/du6647

  24. [24] Jdid, M., Smarandache, F., & Fujita, T. (2025). A linear mathematical model of the vocational training problem in a company using neutrosophic logic, hyperfunctions, and superhyperfunction. Neutrosophic sets and systems, 87, 1-11. https://www.researchgate.net/publication/392238093

  25. [25] Jech, T. (2003). Set theory: The third millennium edition, revised and expanded. Springer. https://doi.org/10.1017/S1079898600003358

  26. [26] Smarandache, F. (2024). Foundation of superhyperstructure & neutrosophic superhyperstructure. Neutrosophic sets and systems, 63, 367-381. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://fs.unm.edu/NSS/SuperHyperStructure.pdf

  27. [27] Rahmati, M., & Hamidi, M. (2023). Extension of g-algebras to superhyper g-algebras. Neutrosophic sets and systems, 55, 557-567. https://doi.org/10.5281/zenodo.7879543

  28. [28] Al-Odhari, A. (2025). Neutrosophic power-set and neutrosophic hyper-structure of neutrosophic set of three types. Annals of pure and applied mathematics, 31(2), 125-146. http://dx.doi.org/10.22457/apam.v31n2a05964

  29. [29] Al-Odhari, A. (2025). A brief comparative study on hyperstructure, super hyperstructure, and n-super superhyperstructure. Neutrosophic knowledge, 6, 39-49. https://doi.org/10.5281/zenodo.15107294

  30. [30] Fujita, T., Jdid, M., & Smarandache, F. (2025). Hyperfunctions and superhyperfunctions in linear programming: Foundations and applications. international journal of neutrosophic science, 26(4), 65-76. https://doi.org/10.54216/IJNS.260408

  31. [31] Rychlewski, J. (2013). Explicitly correlated wave functions in chemistry and physics: Theory and applications (Vol. 13). Springer Science & Business Media. https://doi.org/10.1007/978-94-017-0313-0

  32. [32] Hwang, J. T., Dougherty, E. P., Rabitz, S., & Rabitz, H. (1978). The green’s function method of sensitivity analysis in chemical kinetics. The journal of chemical physics, 69(11), 5180-5191. https://doi.org/10.1063/1.436465

  33. [33] Csanak, G., Taylor, H. S., & Yaris, R. (1971). Green's function technique in atomic and molecular physics. In Advances in atomic and molecular physics (pp. 287-361). Academic Press. https://doi.org/10.1016/S0065-2199(08)60363-2

  34. [34] Pernot, P., & Savin, A. (2018). Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors. The journal of chemical physics, 148(24), 241707–241707. https://doi.org/10.1063/1.5016248

  35. [35] Crichton, R. R. (2012). Biological inorganic chemistry: A new introduction to molecular structure and function. Elsevier. https://B2n.ir/hm4017

  36. [36] Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte chemie international edition, 40(11), 2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11%3C2004::AID-ANIE2004%3E3.0.CO;2-5

  37. [37] Haddad, W. M., Chellaboina, V., & Nersesov, S. G. (2009). Thermodynamics: A dynamical systems approach. Princeton University Press. https://B2n.ir/pn7366

  38. [38] Anderson, G. M. (2005). Thermodynamics of natural systems. Cambridge University Press. https://B2n.ir/hm3462

  39. [39] Hill, T. L. (1962). Thermodynamics of small systems. The journal of chemical physics, 36(12), 3182-3197. https://doi.org/10.1063/1.1732447

  40. [40] Vidler, M., & Tennyson, J. (2000). Accurate partition function and thermodynamic data for water. The journal of chemical physics, 113(21), 9766-9771. https://doi.org/10.1063/1.1321769

  41. [41] Hartmann, A. K. (2005). Calculation of partition functions by measuring component distributions. Physical review letters, 94(5), 050601. https://doi.org/10.1103/PhysRevLett.94.050601

  42. [42] Grosh, J., Jhon, M. S., Ree, T., & Eyring, H. (1967). On an improved partition function of significant structure theory. Proceedings of the national academy of sciences, 57(6), 1566-1572. https://doi.org/10.1073/pnas.57.6.1566

  43. [43] Ganesh, N. (2017). A thermodynamic treatment of intelligent systems. 2017 IEEE International conference on rebooting computing (ICRC) (pp. 1-4). IEEE. https://doi.org/10.1109/ICRC.2017.8123676

  44. [44] Enderle, J. S. (2020). Toward a thermodynamics of meaning. https://doi.org/10.48550/arXiv.2009.11963

  45. [45] Elstner, M., Cui, Q., & Gruden, M. (2024). State sum (partition function) for noninteracting systems. In Introduction to statistical thermodynamics: A molecular perspective (pp. 293-315). Springer International Publishing. https://doi.org/10.1007/978-3-031-54994-6_11

  46. [46] Palma, C. A., Björk, J., Klappenberger, F., Arras, E., Kühne, D., Stafström, S., & Barth, J. V. (2015). Visualization and thermodynamic encoding of single-molecule partition function projections. Nature communications, 6(1). https://doi.org/10.1038/ncomms7210

  47. [47] Agusfrianto, F. A., Al Tahan, M., & Mahatma, Y. (2023). An introduction to neutrohyperstructures on some chemical reactions. In NeutroGeometry, neutroalgebra, and superhyperalgebra in today's world (pp. 81-96). IGI Global. https://doi.org/10.4018/978-1-6684-4740-6.ch004

  48. [48] Eyring, H. (1935). The activated complex in chemical reactions. The Journal of chemical physics, 3(2), 107-115. https://doi.org/10.1063/1.1749604

  49. [49] Tavakoli, M., Shmakov, A., Ceccarelli, F., & Baldi, P. (2022). Rxn hypergraph: A hypergraph attention model for chemical reaction representation. https://doi.org/10.48550/arXiv.2201.01196

  50. [50] Pollak, E., & Talkner, P. (2005). Reaction rate theory: What it was, where is it today, and where is it going?. Chaos: An interdisciplinary journal of nonlinear science, 15(2). https://doi.org/10.1063/1.1858782

  51. [51] Hänggi, P., Talkner, P., & Borkovec, M. (1990). Reaction-rate theory: Fifty years after Kramers. Reviews of modern physics, 62(2), 251-341. https://doi.org/10.1103/RevModPhys.62.251

  52. [52] Hammond, G. S. (1955). A correlation of reaction rates. Journal of the American chemical society, 77(2), 334-338. https://doi.org/10.1021/ja01607a027

  53. [53] Connors, K. A. (1990). Chemical kinetics: The study of reaction rates in solution. Wiley-VCH Verlag GmbH. https://books.google.com/books/about/Chemical_Kinetics.html?id=nHux3YED1HsC

  54. [54] Levenspiel, O. (1998). Chemical reaction engineering. John wiley & sons. https://B2n.ir/hq7538

  55. [55] Yu, P. Y., & Craciun, G. (2018). Mathematical analysis of chemical reaction systems. Israel journal of chemistry, 58(6-7), 733-741. https://doi.org/10.1002/ijch.201800003

  56. [56] Zhang, Y., Xu, A., Zhang, G., & Zhu, C. (2015). Study on the influence of chemical reaction rate on detonation characteristics. Advances in condensed matter physics, 4(3), 85-92. http://dx.doi.org/10.12677/cmp.2015.43010

  57. [57] Huang, C. H., & Li, B. Y. (2014). A non-linear inverse problem in estimating the reaction rate function for an annular-bed reactor. International journal of chemical reactor engineering, 12(1), 271-283. https://doi.org/10.1515/ijcre-2013-0142

  58. [58] Peper, A. (2009). Aspects of the relationship between drug dose and drug effect. Dose-Response, 7(2), 172-192. https://doi.org/10.2203/dose-response.08-019.Peper

  59. [59] Doogue, M. P., & Polasek, T. M. (2011). Drug dosing in renal disease. The clinical biochemist reviews, 32(2), 69-73. https://pmc.ncbi.nlm.nih.gov/articles/PMC3100283/

  60. [60] Schindler, M. (2022). Modeling synergistic effects by using general Hill-type response surfaces describing drug interactions. Scientific reports, 12(1), 10524. https://doi.org/10.1038/s41598-022-13469-7

  61. [61] Chow, C. C., Ong, K. M., Dougherty, E. J., & Simons Jr, S. S. (2011). Inferring mechanisms from dose–response curves. In Methods in enzymology (pp. 465-483). Academic Press. https://doi.org/10.1016/B978-0-12-381270-4.00016-0

  62. [62] Schindler, M. (2017). Theory of synergistic effects: Hill-type response surfaces as ‘null-interaction’models for mixtures. Theoretical biology and medical modelling, 14(1), 15. https://doi.org/10.1186/s12976-017-0060-y

  63. [63] Guardabascio, B., & Ventura, M. (2014). Estimating the dose–response function through a generalized linear model approach. The Stata Journal, 14(1), 141-158. https://doi.org/10.1177/1536867X1401400110

  64. [64] Roman, H. A., Walsh, T. L., Coull, B. A., Dewailly, É., Guallar, E., Hattis, D., ... ., & Rice, G. (2011). Evaluation of the cardiovascular effects of methylmercury exposures: current evidence supports development of a dose–response function for regulatory benefits analysis. Environmental health perspectives, 119(5), 607-614. https://doi.org/10.1289/ehp.1003012

  65. [65] Williams, M. S., Ebel, E. D., & Vose, D. (2011). Methodology for determining the appropriateness of a linear dose‐response function. Risk analysis: An international journal, 31(3), 345-350. https://doi.org/10.1111/j.1539-6924.2010.01518.x

  66. [66] Srivastava, M., & Payne, J. L. (2022). On the incongruence of genotype-phenotype and fitness landscapes. PLoS computational biology, 18(9), e1010524. https://doi.org/10.1371/journal.pcbi.1010524

  67. [67] Wahl, L. M., & Campos, P. R. (2023). Evolutionary rescue on genotypic fitness landscapes. Journal of the royal society interface, 20(208), 20230424. https://doi.org/10.1098/rsif.2023.0424

  68. [68] Katsonis, P., & Lichtarge, O. (2014). A formal perturbation equation between genotype and phenotype determines the evolutionary action of protein-coding variations on fitness. Genome research, 24(12), 2050-2058. https://doi.org/10.1101/gr.176214.114

  69. [69] De Jong, G. (1994). The fitness of fitness concepts and the description of natural selection. The quarterly review of biology, 69(1), 3-29. https://doi.org/10.1086/418431

  70. [70] Almulla, H., & Gay, G. (2022). Learning how to search: generating effective test cases through adaptive fitness function selection. Empirical software engineering, 27(2), 38. https://doi.org/10.1007/s10664-021-10048-8

  71. [71] Wedge, D. C., & Kell, D. B. (2008). Rapid prediction of optimum population size in genetic programming using a novel genotype- fitness correlation. Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp. 1315-1322). Association for computing machinery. https://doi.org/10.1145/1389095.1389346

  72. [72] Lande, R. (2007). Expected relative fitness and the adaptive topography of fluctuating selection. Evolution, 61(8), 1835-1846. https://doi.org/10.1111/j.1558-5646.2007.00170.x

  73. [73] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

  74. [74] Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer science & business media. https://doi.org/10.1007/978-94-010-0646-0

  75. [75] Rosenfeld, A. (1975). Fuzzy graphs. In Fuzzy sets and their applications to cognitive and decision processes (pp. 77-95). Academic press. https://doi.org/10.1016/B978-0-12-775260-0.50008-6

  76. [76] Akram, M., Davvaz, B., & Feng, F. (2013). Intuitionistic fuzzy soft K-algebras. Mathematics in computer science, 7(3), 353-365. https://doi.org/10.1007/s11786-013-0158-5

  77. [77] Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite study. https://B2n.ir/sf7979

  78. [78] Smarandache, F. (2016). Neutrosophic overset, neutrosophic underset, and neutrosophic offset. Similarly for neutrosophic over-/under-/off-logic, probability, and statistics. Infinite Study. https://B2n.ir/jg5713

  79. [79] Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Single valued neutrosophic graphs. Journal of New theory, (10), 86-101. https://dergipark.org.tr/en/pub/jnt/issue/34504/381241

  80. [80] Balamurugan, M., Hakami, K. H., Ansari, M. A., Al-Masarwah, A., & Loganathan, K. (2024). Quadri-polar fuzzy fantastic ideals in bci-algebras: A topsis framework and application. European journal of pure and applied mathematics, 17(4), 3129-3155. https://doi.org/10.29020/nybg.ejpam.v17i4.5429

  81. [81] Torra, V., & Narukawa, Y. (2009). On hesitant fuzzy sets and decision. 2009 IEEE international conference on fuzzy systems (pp. 1378-1382). IEEE. https://doi.org/10.1109/FUZZY.2009.5276884

  82. [82] Xu, Z. (2014). Hesitant fuzzy sets theory (Vol. 314). Springer international publishing. https://doi.org/10.1007/978-3-319-04711-9

  83. [83] Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems, 25(6), 529-539. https://doi.org/10.1002/int.20418

  84. [84] Starosta, B., & Kosiński, W. (2009). Meta sets–another approach to fuzziness. In Views on fuzzy sets and systems from different perspectives: Philosophy and Logic, criticisms and applications (pp. 509-532). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-93802-6_25

  85. [85] Starosta, B. (2009). Fuzzy sets as metasets. Procceding of XI international PhD workshop (OWD 2009) (pp. 11-15). Conference archives polish association for knowledge management. https://B2n.ir/xd3798

  86. [86] lomiej Starosta, B. (2009). Application of meta sets to character recognition. Foundations of intelligent systems (pp. 602-611). Springer. https://doi.org/10.1007/978-3-642-04125-9#page=616

  87. [87] Khan, W. A., Arif, W., Nguyen, Q. H., Le, T. T., & Van Pham, H. (2024). Picture fuzzy directed hypergraphs with applications toward decision-making and managing hazardous chemicals. IEEE Access, 12, 87816-87827. https://doi.org/10.1109/ACCESS.2024.3415120

  88. [88] Das, S., Poulik, S., & Ghorai, G. (2024). Picture fuzzy ϕ-tolerance competition graphs with its application. Journal of ambient intelligence and humanized computing, 15(1), 547-559. https://doi.org/10.1007/s12652-023-04704-8

  89. [89] Cuong, B. C., & Kreinovich, V. (2013). Picture fuzzy sets-a new concept for computational intelligence problems. 2013 third world congress on information and communication technologies (WICT 2013) (pp. 1-6). IEEE. https://doi.org/10.1109/WICT.2013.7113099

  90. [90] Ali, J. (2023). Norm-based distance measure of q-rung orthopair fuzzy sets and its application in decision-making. Computational and applied mathematics, 42(4), 184. https://doi.org/10.1007/s40314-023-02313-x

  91. [91] Asif, M., Kattan, D. A., Pamučar, D., & Ali, G. (2021). q‐rung orthopair fuzzy matroids with application to human trafficking. Discrete dynamics in nature and society, 2021(1), 8261118. https://doi.org/10.1155/2021/8261118

  92. [92] Akram, M., Saleem, D., & Al-Hawary, T. (2020). Spherical fuzzy graphs with application to decision-making. Mathematical and computational applications, 25(1). https://doi.org/10.3390/mca25010008

  93. [93] PA, F. P., John, S. J., & P, R. K. (2020). On spherical fuzzy soft expert sets. American institute of physics conference proceedings (pp. 030001). American institute of physics publishing limited liability company. https://doi.org/10.1063/5.0017243

  94. [94] Kutlu Gündoğdu, F., & Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of intelligent & fuzzy systems, 36(1), 337-352. https://doi.org/10.3233/JIFS-181401

  95. [95] Jun, Y. B., Song, S. Z., & Kim, S. J. (2018). Length-fuzzy subalgebras in bck/bci-algebras. Mathematics, 6(1). https://doi.org/10.3390/math6010011

  96. [96] Tacha, N., Phayapsiang, P., & Iampan, A. (2022). Length and Mean Fuzzy UP-subalgebras of UP-algebras. Caspian journal of mathematical sciences, 11(1), 264-303. https://doi.org/10.22080/cjms.2021.17121.1416

  97. [97] Smarandache, F. (2018). Plithogenic set, an extension of crisp, fuzzy, intuitionistic fuzzy, and neutrosophic sets-revisited. Infinite study. https://B2n.ir/uk4359

  98. [98] Sultana, F., Gulistan, M., Ali, M., Yaqoob, N., Khan, M., Rashid, T., & Ahmed, T. (2023). A study of plithogenic graphs: Applications in spreading coronavirus disease (covid-19) globally. Journal of ambient intelligence and humanized computing, 14(10), 13139-13159. https://doi.org/10.1007/s12652-022-03772-6

Published

2025-02-26

How to Cite

Fujita, T. (2025). Hyperfunction and Superhyperfunction in Chemistry. Biocompounds, 2(1), 17-41. https://doi.org/10.48313/bic.vi.31